亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? 馬克斯普朗克提供的機器學習程序包
??
字號:
Two things are provided in this directory: an automatic model selectiontool and a python binding for libsvm.		Part I: Model Selection ToolsIntroduction===============grid.py is a model selection tool for C-SVM classification using rbf(radial basis function) kernel. It uses cross validation (CV) techniqueto estimate the accuracy of each parameter combination in the specified range and helps you to decide the best parameters for your problem.grid.py directly executes libsvm binaries (so no python binding is needed)for cross validation and then draw contour of CV accuracy using gnuplot.You must have libsvm and gnuplot installed before using it. The package gnuplot is available at http://www.gnuplot.info/Usage: grid.py [-log2c begin,end,step] [-log2g begin,end,step] [-v fold]        [-svmtrain pathname] [-gnuplot pathname] [-out pathname] [-png pathname]         [additional parameters for svm-train] datasetThe program conducts v-fold cross valiation using parameter C (and gamma) = 2^begin, 2^(begin+step), ..., 2^end. You can specify where the libsvm executable and gnuplot are using the-svmtrain and -gnuplot parameters.For windows users, if you are using gnuplot 3.7.1, please upgrade to version3.7.3. The pgnuplot.exe in version 3.7.1 has a bug.Example=======> python grid.py -log2c -5,5,1 -log2g -4,0,1 -v 5 -m 300 heart_scale(Windows users might also use "start grid.py" instead of "python grid.py")Output: two filesdataset.png: the contour plot of the CV accuracy (generated by gnuplot)dataset.out: the log of accuracy at each (C,gamma)Parallel grid search (experimental)===================================You can conduct a parallel grid search by dispatching jobs to a cluster of computers which share the same file system. First, you add machine names in grid.py:telnet_workers = ["linux1", "linux5", "linux5"]The same machine (e.g., linux5 here) can be listed more than once ifit has multiple CPUs or has more RAM. If the local machine is thebest, you can also enlarge the nr_local_worker. For example:nr_local_worker = 2Example:> python grid.py heart_scalePassword: ********login ok linux1login ok linux5login ok linux5...The password is the one used for entering your system. If -log2c, -log2g, or-v is not specified, defaule values are used. If your system uses ssh instead of telnet, you should setup ssh first so thatthe authentication works without asking a password, and list the computer namesin ssh_workers.		Part II: Python-to-libsvm interfaceIntroduction============Python (http://www.python.org/) is a programming language suitable forrapid development. This python-to-libsvm interface is developed so users can easily experiment with libsvm using python. The interface is developed with SWIG, The original idea and the SWIG interface file was provided by Carl Staelin(staelin@hpl.hp.com) from HP Labs. The interface was integrated into thelibsvm package by Li-lun Wang (llwang@infor.org) from National TaiwanUniversity. Chih-Chung Chang (b4506055@csie.ntu.edu.tw) from NationalTaiwan University also contributed a lot of useful suggestions and help.Installation============The build process for the various Unix systems is as follows:Before you build the module, you need to find out the python includedirectory, which is typically located at /usr/local/include/python2.2 or/usr/include/python. You can set the variable PYTHON_INCLUDEDIR inMakefile manually or use something like the following:	make PYTHON_INCLUDEDIR=/usr/include/python allAlthough the interface is generated by SWIG, it is not necessary to haveSWIG installed because the generated svmc_wrap.c is included in this package(It was generated using SWIG 1.1p5). If you prefer to generate the interfacewith SWIG on your own, you can simply remove the generated files with	make morecleanbefore building the module.When the build process completes, a shared object called svmc.so will becreated.For win32 systems, the shared library svmc.dll is ready in this package.Usage=====To use the module, the files svm.py and the shared library (namely svmc.soor svmc.dll) must be placed in the current directory, the python librarydirectory, or the directory where the environment variable PYTHONHOMEpoints to. The user then imports everything in svm.py to use libsvm inpython:	from svm import *There are three classes in svm.py, namely svm_parameter, svm_problem, andsvm_model.svm_parameter is used to set the parameters of the training process. Theattributes in svm_parameter include svm_type, kernel_type, degree, gamma,coef0, nu, cache_size, C, eps, p, shrinking, and nr_weight. Available svmtypes include C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, and NU_SVR. Availablekernel types include LINEAR, POLY, RBF, and SIGMOID. The user can setup theparameters with the constructor and keyword arguments:	param = svm_parameter(kernel_type = LINEAR, C = 10)The user can also modify the parameters later:	param.kernel_type = RBFsvm_problem is used to hold the training data for the problem. Theconstructor takes two arguments; the first of them is the list of labels,and the other is the list of samples. For example	prob = svm_problem([1,-1],[[1,0,1],[-1,0,-1]])or equivalently	prob = svm_problem([1,-1],[{1:1,3:1},{1:-1,3:-1}])Once the parameter and problem are ready, we can construct the model:	m = svm_model(prob, param)To predict a new sample with the model:	r = m.predict([1, 1, 1])To save the model to a file:	m.save('test.model')and to load the model from a file:	m = svm_model('test.model')Examples========There are two examples in this package. The one is svm_test.py, and theother is test_cross_validation.py.svm_test.py tests four kernels, i.e., linear, polynomial, RBF, andsigmoid, on the XOR problem with C-SVM.test_cross_validation.py makes use of cross_validation.py which is animplementation of cross validation in python. This example demonstratesloading data from file and does a ten-fold cross validation on theheart_scale dataset.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品国一区二区三区| 国产精品嫩草影院com| 在线观看av一区| 播五月开心婷婷综合| 国产精品99久久久久久似苏梦涵| 毛片一区二区三区| 美女网站一区二区| 国内国产精品久久| 国产美女娇喘av呻吟久久| 青青草精品视频| 日本亚洲最大的色成网站www| 制服丝袜亚洲网站| 91精品国产丝袜白色高跟鞋| 97精品国产97久久久久久久久久久久| 99视频精品免费视频| fc2成人免费人成在线观看播放| 成人午夜视频福利| 成人国产一区二区三区精品| 成av人片一区二区| 成人18精品视频| 高清在线观看日韩| 懂色中文一区二区在线播放| 青青草国产精品97视觉盛宴| 免费欧美高清视频| 亚洲va欧美va天堂v国产综合| 亚洲伊人伊色伊影伊综合网| 亚洲一区中文日韩| 免费成人在线播放| 韩国v欧美v日本v亚洲v| av成人老司机| 色8久久人人97超碰香蕉987| 欧美区一区二区三区| 精品日韩在线一区| 中文字幕一区二区三区不卡| 欧美乱妇23p| 在线视频欧美区| 国产不卡在线一区| 99精品国产99久久久久久白柏| 色综合久久九月婷婷色综合| www.99精品| 欧美日韩在线播放| 日韩三级视频中文字幕| 欧美韩国日本不卡| 亚洲精品视频在线看| 中文字幕在线视频一区| 久久久久久久久久久黄色| 久久精品人人做人人综合| 亚洲天堂免费看| 日韩高清不卡一区| 国产精品一区免费在线观看| av爱爱亚洲一区| 在线成人午夜影院| 2020日本不卡一区二区视频| 久久久国产综合精品女国产盗摄| 亚洲精品免费播放| 日本不卡一区二区| 99久免费精品视频在线观看| 欧美性猛交xxxx乱大交退制版 | 久久超级碰视频| 国产+成+人+亚洲欧洲自线| 欧美中文字幕一二三区视频| 91精品婷婷国产综合久久竹菊| 欧美日韩在线直播| 久久久久久夜精品精品免费| 亚洲欧洲综合另类| 久久国产夜色精品鲁鲁99| 波多野结衣欧美| 五月婷婷综合网| 色噜噜久久综合| 亚洲18女电影在线观看| 成人性生交大片免费看在线播放| 欧美色偷偷大香| 国产香蕉久久精品综合网| 天天爽夜夜爽夜夜爽精品视频| 国产jizzjizz一区二区| 欧美一区二区三区精品| 中文字幕中文字幕在线一区| 精品一区二区在线观看| 色婷婷综合中文久久一本| 久久女同性恋中文字幕| 亚洲国产裸拍裸体视频在线观看乱了 | 一本色道久久综合精品竹菊| 精品国产污网站| 精品在线一区二区| 欧美久久一二区| 欧美激情中文不卡| 激情综合色丁香一区二区| 在线亚洲一区二区| 亚洲欧美在线视频| 久久精品国产久精国产爱| 欧美日韩免费观看一区三区| 国产精品入口麻豆九色| 精品一区中文字幕| 欧美精品第1页| 午夜精品一区二区三区免费视频| 成人国产精品免费观看视频| 国产视频一区在线播放| 五月天激情综合网| 欧美日韩精品一区二区| 一区二区视频在线| 91亚洲资源网| 亚洲欧洲精品天堂一级| 北条麻妃国产九九精品视频| 久久精品视频免费观看| 国产成人在线影院| 欧美理论片在线| 天堂va蜜桃一区二区三区漫画版 | 在线综合视频播放| 天天操天天干天天综合网| 岛国一区二区三区| 欧美精品一区二区三区一线天视频| 国产精品高潮呻吟| 99精品视频在线免费观看| 国产网站一区二区三区| 国产成人综合亚洲91猫咪| 久久久亚洲国产美女国产盗摄| 麻豆专区一区二区三区四区五区| 国产在线视视频有精品| 国产欧美视频在线观看| 国产激情精品久久久第一区二区| 久久久精品日韩欧美| 国产精一品亚洲二区在线视频| 国产视频一区在线观看| 国产精品一区在线观看你懂的| 国产三级精品视频| 欧美性xxxxxx少妇| 日日夜夜一区二区| 欧美一区二区在线不卡| 国产在线不卡视频| 国产欧美一区二区精品性色超碰| 成人av在线播放网址| 日韩美女精品在线| 欧美精选午夜久久久乱码6080| 性做久久久久久| 久久综合色天天久久综合图片| 精品一区二区免费看| 国产精品毛片a∨一区二区三区| 成人av电影免费在线播放| 一区二区三区不卡视频在线观看| 欧美美女视频在线观看| 久久99国产精品尤物| 久久久精品tv| 欧美三级日韩在线| 美女尤物国产一区| 亚洲欧洲精品天堂一级| 在线免费观看成人短视频| 美女国产一区二区| 久久亚区不卡日本| 在线免费观看成人短视频| 奇米色777欧美一区二区| 亚洲国产高清在线| 91黄色小视频| 国产精品亚洲第一| 亚洲另类春色国产| 久久美女高清视频| 色诱亚洲精品久久久久久| 久久疯狂做爰流白浆xx| 国产精品人妖ts系列视频| 欧美视频一区二区三区四区| 美女视频免费一区| 中文字幕亚洲区| 欧美亚洲一区三区| 国产精品一区在线| 亚洲无线码一区二区三区| 久久久精品国产99久久精品芒果| 成人一级视频在线观看| 日韩电影免费一区| 欧美xxxx老人做受| 色天使色偷偷av一区二区| 一区二区三区欧美激情| 欧美电影免费提供在线观看| 秋霞av亚洲一区二区三| 91福利视频网站| 最新国产成人在线观看| 日韩av不卡一区二区| 亚洲品质自拍视频网站| 日韩你懂的电影在线观看| 日本精品视频一区二区| 精品在线观看视频| 日韩不卡免费视频| 亚洲欧美激情在线| 国产农村妇女毛片精品久久麻豆 | 亚洲丶国产丶欧美一区二区三区| 久久久美女毛片| 欧美成人精精品一区二区频| 色综合色狠狠综合色| 顶级嫩模精品视频在线看| 日本欧美加勒比视频| 亚洲成av人在线观看| 久久久国产精品麻豆| 在线免费亚洲电影| 国产91精品精华液一区二区三区| 视频一区二区不卡| 亚洲精品国产视频| 中文字幕av一区二区三区高| 日韩一级黄色片| 色婷婷激情一区二区三区| 丁香桃色午夜亚洲一区二区三区| 麻豆成人综合网| 一区二区三区不卡视频|