亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? readme

?? SVM是一種常用的模式分類機器學(xué)習(xí)算法
??
?? 第 1 頁 / 共 2 頁
字號:
      2		  0	  0.1	  0.3	 -1.2	  0      1		  0.4	  0	  0	  0	  0      2		  0	  0.1	  0	  1.4	  0.5      3		 -0.1	 -0.2	  0.1	  1.1	  0.1    then the components of svm_problem are:    l = 5    y -> 1 2 1 2 3    x -> [ ] -> (2,0.1) (3,0.2) (-1,?)	 [ ] -> (2,0.1) (3,0.3) (4,-1.2) (-1,?)	 [ ] -> (1,0.4) (-1,?)	 [ ] -> (2,0.1) (4,1.4) (5,0.5) (-1,?)	 [ ] -> (1,-0.1) (2,-0.2) (3,0.1) (4,1.1) (5,0.1) (-1,?)    where (index,value) is stored in the structure `svm_node':	struct svm_node	{		int index;		double value;	};    index = -1 indicates the end of one vector.     struct svm_parameter describes the parameters of an SVM model:	struct svm_parameter	{		int svm_type;		int kernel_type;		int degree;	/* for poly */		double gamma;	/* for poly/rbf/sigmoid */		double coef0;	/* for poly/sigmoid */		/* these are for training only */		double cache_size; /* in MB */		double eps;	/* stopping criteria */		double C;	/* for C_SVC, EPSILON_SVR, and NU_SVR */		int nr_weight;		/* for C_SVC */		int *weight_label;	/* for C_SVC */		double* weight;		/* for C_SVC */		double nu;	/* for NU_SVC, ONE_CLASS, and NU_SVR */		double p;	/* for EPSILON_SVR */		int shrinking;	/* use the shrinking heuristics */		int probability; /* do probability estimates */	};    svm_type can be one of C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR.    C_SVC:		C-SVM classification    NU_SVC:		nu-SVM classification    ONE_CLASS:		one-class-SVM    EPSILON_SVR:	epsilon-SVM regression    NU_SVR:		nu-SVM regression    kernel_type can be one of LINEAR, POLY, RBF, SIGMOID.    LINEAR:	u'*v    POLY:	(gamma*u'*v + coef0)^degree    RBF:	exp(-gamma*|u-v|^2)    SIGMOID:	tanh(gamma*u'*v + coef0)    PRECOMPUTED: kernel values in training_set_file    cache_size is the size of the kernel cache, specified in megabytes.    C is the cost of constraints violation. (we usually use 1 to 1000)    eps is the stopping criterion. (we usually use 0.00001 in nu-SVC,    0.001 in others). nu is the parameter in nu-SVM, nu-SVR, and    one-class-SVM. p is the epsilon in epsilon-insensitive loss function    of epsilon-SVM regression. shrinking = 1 means shrinking is conducted;    = 0 otherwise. probability = 1 means model with probability    information is obtained; = 0 otherwise.    nr_weight, weight_label, and weight are used to change the penalty    for some classes (If the weight for a class is not changed, it is    set to 1). This is useful for training classifier using unbalanced    input data or with asymmetric misclassification cost.    nr_weight is the number of elements in the array weight_label and    weight. Each weight[i] corresponds to weight_label[i], meaning that    the penalty of class weight_label[i] is scaled by a factor of weight[i].        If you do not want to change penalty for any of the classes,    just set nr_weight to 0.    *NOTE* Because svm_model contains pointers to svm_problem, you can    not free the memory used by svm_problem if you are still using the    svm_model produced by svm_train().- Function: double svm_predict(const struct svm_model *model,                               const struct svm_node *x);    This function does classification or regression on a test vector x    given a model.    For a classification model, the predicted class for x is returned.    For a regression model, the function value of x calculated using    the model is returned. For an one-class model, +1 or -1 is    returned.- Function: void svm_cross_validation(const struct svm_problem *prob,	const struct svm_parameter *param, int nr_fold, double *target);    This function conducts cross validation. Data are separated to    nr_fold folds. Under given parameters, sequentially each fold is    validated using the model from training the remaining. Predicted    labels in the validation process are stored in the array called    target.    The format of svm_prob is same as that for svm_train(). - Function: int svm_get_svm_type(const struct svm_model *model);    This function gives svm_type of the model. Possible values of    svm_type are defined in svm.h.- Function: int svm_get_nr_class(const svm_model *model);    For a classification model, this function gives the number of    classes. For a regression or an one-class model, 2 is returned.- Function: void svm_get_labels(const svm_model *model, int* label)        For a classification model, this function outputs the name of    labels into an array called label. For regression and one-class    models, label is unchanged.- Function: double svm_get_svr_probability(const struct svm_model *model);    For a regression model with probability information, this function    outputs a value sigma > 0. For test data, we consider the    probability model: target value = predicted value + z, z: Laplace    distribution e^(-|z|/sigma)/(2sigma)    If the model is not for svr or does not contain required    information, 0 is returned.- Function: void svm_predict_values(const svm_model *model, 				    const svm_node *x, double* dec_values)    This function gives decision values on a test vector x given a    model.    For a classification model with nr_class classes, this function    gives nr_class*(nr_class-1)/2 decision values in the array    dec_values, where nr_class can be obtained from the function    svm_get_nr_class. The order is label[0] vs. label[1], ...,    label[0] vs. label[nr_class-1], label[1] vs. label[2], ...,    label[nr_class-2] vs. label[nr_class-1], where label can be    obtained from the function svm_get_labels.    For a regression model, label[0] is the function value of x    calculated using the model. For one-class model, label[0] is +1 or    -1.- Function: double svm_predict_probability(const struct svm_model *model, 	    const struct svm_node *x, double* prob_estimates);        This function does classification or regression on a test vector x    given a model with probability information.    For a classification model with probability information, this    function gives nr_class probability estimates in the array    prob_estimates. nr_class can be obtained from the function    svm_get_nr_class. The class with the highest probability is    returned. For all other situations, the array prob_estimates is    unchanged and the returned value is the same as that of    svm_predict.- Function: const char *svm_check_parameter(const struct svm_problem *prob,                                            const struct svm_parameter *param);    This function checks whether the parameters are within the feasible    range of the problem. This function should be called before calling    svm_train(). It returns NULL if the parameters are feasible,     otherwise an error message is returned. - Function: int svm_check_probability_model(const struct svm_model *model);    This function checks whether the model contains required    information to do probability estimates. If so, it returns    +1. Otherwise, 0 is returned. This function should be called    before calling svm_get_svr_probability and    svm_predict_probability.- Function: int svm_save_model(const char *model_file_name,			       const struct svm_model *model);    This function saves a model to a file; returns 0 on success, or -1    if an error occurs.- Function: struct svm_model *svm_load_model(const char *model_file_name);    This function returns a pointer to the model read from the file,    or a null pointer if the model could not be loaded.- Function: void svm_destroy_model(struct svm_model *model);    This function frees the memory used by a model.- Function: void svm_destroy_param(struct svm_parameter *param);    This function frees the memory used by a parameter set.Java Version============The pre-compiled java class archive `libsvm.jar' and its source files arein the java directory. To run the programs, usejava -classpath libsvm.jar svm_train <arguments>java -classpath libsvm.jar svm_predict <arguments>java -classpath libsvm.jar svm_toyYou may need to add Java runtime library (like classes.zip) to the classpath.You may need to increase maximum Java heap size.Library usages are similar to the C version. These functions are available:public class svm {	public static svm_model svm_train(svm_problem prob, svm_parameter param);	public static void svm_cross_validation(svm_problem prob, svm_parameter param, int nr_fold, double[] target);	public static int svm_get_svm_type(svm_model model);	public static int svm_get_nr_class(svm_model model);	public static void svm_get_labels(svm_model model, int[] label);	public static double svm_get_svr_probability(svm_model model);	public static void svm_predict_values(svm_model model, svm_node[] x, double[] dec_values);	public static double svm_predict(svm_model model, svm_node[] x);	public static double svm_predict_probability(svm_model model, svm_node[] x, double[] prob_estimates);	public static void svm_save_model(String model_file_name, svm_model model) throws IOException	public static svm_model svm_load_model(String model_file_name) throws IOException	public static String svm_check_parameter(svm_problem prob, svm_parameter param);	public static int svm_check_probability_model(svm_model model);}The library is in the "libsvm" package.Note that in Java version, svm_node[] is not ended with a node whose index = -1.Building Windows Binaries=========================Windows binaries are in the directory `windows'. To build them viaVisual C++, use the following steps:1. Open a dos command box and change to libsvm directory. Ifenvironment variables of VC++ have not been set, type"C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\bin\vcvars32.bat"You may have to modify the above according which version of VC++orwhere it is installed.2. Typenmake -f Makefile.win clean all3. (optional) To build python interface, download and install Python.Edit Makefile.win and change PYTHON_INC and PYTHON_LIB to your pythoninstallation. Typenmake -f Makefile.win python and then copy windows\python\svmc.dll to the python directory.Another way is to build them from Visual C++ environment. See detailsin libsvm faq.Additional Tools: Model Selection, Sub-sampling, etc.====================================================See the README file in the tools directory.Python Interface================See the README file in python directory.Additional Information======================If you find LIBSVM helpful, please cite it asChih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector machines, 2001.Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvmLIBSVM implementation document is available athttp://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdfFor any questions and comments, please send your email tocjlin@csie.ntu.edu.twAcknowledgments:This work was supported in part by the National Science Council of Taiwan via the grant NSC 89-2213-E-002-013.The authors thank their group members and usersfor many helpful discussions and comments. They are listed inhttp://www.csie.ntu.edu.tw/~cjlin/libsvm/acknowledgements

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲激情网站免费观看| 久久久美女毛片| 亚洲国产一区视频| 91福利视频久久久久| 樱桃国产成人精品视频| 欧美日韩日日夜夜| 免费成人你懂的| 国产欧美一区二区精品性色超碰 | 午夜电影一区二区| 欧美精品丝袜中出| 久久精品国产免费| 337p粉嫩大胆噜噜噜噜噜91av| 国产麻豆视频一区二区| 国产精品成人免费在线| 欧美亚洲动漫精品| 美女爽到高潮91| 国产农村妇女精品| 欧洲国产伦久久久久久久| 调教+趴+乳夹+国产+精品| 精品日韩一区二区三区| 成人黄色在线看| 亚洲一区二区三区四区五区黄| 欧美电影精品一区二区| 成人丝袜高跟foot| 午夜a成v人精品| 国产欧美一区视频| 制服丝袜亚洲网站| 成人综合在线视频| 婷婷六月综合网| 国产精品免费视频一区| 欧美精品自拍偷拍| 成人性视频网站| 日本在线不卡视频| 国产精品嫩草99a| 日韩精品一区二区三区老鸭窝| 一本一道波多野结衣一区二区| 久久国产精品第一页| 亚洲精选免费视频| 国产亚洲一本大道中文在线| 欧美日韩国产bt| 99久久精品国产导航| 激情图区综合网| 日日夜夜免费精品| 国产精品免费久久| 精品国产伦一区二区三区观看体验 | 日韩国产精品久久| 亚洲欧洲性图库| 精品久久久三级丝袜| 欧美日韩免费高清一区色橹橹| 丁香亚洲综合激情啪啪综合| 免费在线看成人av| 亚洲一区日韩精品中文字幕| 亚洲天堂网中文字| 国产色产综合产在线视频| 欧美一区国产二区| 欧美视频一二三区| 91国偷自产一区二区使用方法| 成人99免费视频| 成人午夜在线免费| 国产资源在线一区| 免费av成人在线| 日韩电影在线免费| 亚洲国产精品久久不卡毛片| 亚洲美女在线一区| 国产精品乱码一区二区三区软件 | 成人欧美一区二区三区黑人麻豆| 精品国产成人在线影院| 日韩欧美一区二区久久婷婷| 91精品免费在线| 91精品国产91久久久久久一区二区| 欧美日韩一级片网站| 欧美三级中文字幕在线观看| 欧美亚洲高清一区二区三区不卡| 91亚洲精华国产精华精华液| 成人aa视频在线观看| 99精品国产热久久91蜜凸| 成人国产精品免费观看| 99这里只有久久精品视频| 日韩欧美亚洲国产精品字幕久久久 | 欧美人狂配大交3d怪物一区| 欧美日本一区二区| 欧美一区二区三区的| 欧美一级黄色录像| 日韩欧美国产一区二区三区| 久久综合久久鬼色中文字| 国产亚洲欧美中文| 国产精品女主播av| 亚洲精品免费一二三区| 亚洲美女视频在线观看| 亚洲成人激情社区| 蜜桃av一区二区| 国产成人免费视频精品含羞草妖精| 国产精品18久久久久久久久| 99久久国产综合色|国产精品| 色婷婷av一区| 日韩情涩欧美日韩视频| 欧美精品一区二区三区蜜桃| 国产精品美女久久久久av爽李琼| 亚洲毛片av在线| 日本中文字幕一区二区有限公司| 韩国一区二区三区| 99精品视频一区二区三区| 欧美亚洲国产一区二区三区| 日韩欧美亚洲国产精品字幕久久久| 国产清纯白嫩初高生在线观看91| 国产精品夫妻自拍| 日韩精品欧美成人高清一区二区| 国产精品影视天天线| 91免费国产在线| 日韩精品一区在线观看| 国产精品电影院| 日本在线不卡一区| 成人免费av在线| 3d动漫精品啪啪一区二区竹菊| 久久久久久久久久久久久夜| 一区二区三区在线免费视频| 毛片av中文字幕一区二区| av影院午夜一区| 日韩一区二区在线看片| 中文字幕欧美一| 精品在线免费视频| 色综合天天性综合| 亚洲一区二区免费视频| 国产成都精品91一区二区三| 欧美日韩黄视频| 国产精品美女久久久久aⅴ | 久久99最新地址| 色呦呦日韩精品| 国产三级三级三级精品8ⅰ区| 亚洲一区影音先锋| 成人免费av网站| 2020国产精品| 无码av免费一区二区三区试看| 粉嫩13p一区二区三区| 欧美情侣在线播放| 亚洲欧美一区二区三区孕妇| 国产成人三级在线观看| 日韩一区二区在线观看视频 | 亚洲欧洲日产国产综合网| 免费一级片91| 欧美精品1区2区3区| 亚洲免费在线电影| 国产福利一区二区三区视频| 日韩欧美不卡在线观看视频| 亚洲成av人综合在线观看| 色综合久久久久| 国产精品久久久久久久久搜平片 | 五月开心婷婷久久| 日本国产一区二区| 中文字幕在线不卡| 丰满少妇久久久久久久 | 国产精品久久久久久久久快鸭| 久久成人久久鬼色| 91麻豆精品国产自产在线观看一区| 一区二区三区在线观看欧美| 一本色道久久综合精品竹菊| 中文字幕一区二区在线观看| 成人黄色免费短视频| 国产欧美日韩另类一区| 精品系列免费在线观看| 欧美一区二区三区四区视频| 日韩精品视频网站| 欧美精品精品一区| 五月天婷婷综合| 91精品国产色综合久久不卡蜜臀| 婷婷中文字幕综合| 欧美日韩精品三区| 日本亚洲三级在线| 日韩欧美国产三级电影视频| 国模冰冰炮一区二区| 欧美成人三级在线| 久久国产日韩欧美精品| 久久综合99re88久久爱| 国产一区二区三区观看| 久久日韩精品一区二区五区| 国产成人8x视频一区二区| 国产喷白浆一区二区三区| 国产a久久麻豆| 亚洲精品视频在线| 欧美色涩在线第一页| 青青草国产成人av片免费| 精品国产凹凸成av人网站| 国产成人免费av在线| 亚洲人成伊人成综合网小说| 欧美日韩精品一区二区天天拍小说| 日日夜夜免费精品视频| 精品国产乱码91久久久久久网站| 国产**成人网毛片九色| 国产精品免费aⅴ片在线观看| 中文字幕在线一区免费| 91九色02白丝porn| 无码av免费一区二区三区试看| 精品国产乱码久久久久久牛牛| 成人国产免费视频| 亚洲一卡二卡三卡四卡无卡久久 | 99精品视频中文字幕| 亚洲丰满少妇videoshd| 精品国产99国产精品| 91原创在线视频| 美女视频黄 久久|