亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? readme

?? SVM是一種常用的模式分類機(jī)器學(xué)習(xí)算法
??
字號(hào):
Python-to-libsvm interfaceIntroduction============Python (http://www.python.org/) is a programming language suitable forrapid development. This python-to-libsvm interface is developed so users can easily experiment with libsvm using python. The interface is developed with SWIG, The original idea and the SWIG interface file was provided by Carl Staelin(staelin@hpl.hp.com) from HP Labs. The interface was integrated into thelibsvm package by Li-lun Wang (llwang@infor.org) from National TaiwanUniversity. Chih-Chung Chang (b4506055@csie.ntu.edu.tw) from NationalTaiwan University also contributed a lot of useful suggestions and help.Installation============The build process for the various Unix systems is as follows:Before you build the module, you need to find out the python includedirectory, which is typically located at /usr/local/include/python2.4 or/usr/include/python. You can set the variable PYTHON_INCLUDEDIR inMakefile manually or use something like the following:	make PYTHON_INCLUDEDIR=/usr/include/python allAlthough the interface is generated by SWIG, it is not necessary tohave SWIG installed because the generated svmc_wrap.c is included inthis package (It was generated using SWIG 1.3.21). If you prefergenerating the interface with SWIG on your own, you can simply removethe generated files with	make morecleanbefore building the module.When the build process completes, a shared object called svmc.so will becreated.For win32 systems, the shared library svmc.dll is ready in thedirectory windows/python. You need to copy it to this directory.  Thedll file depends on different versions of python, so you may have tore-make it by following the instruction of building windows binariesin libsvm README.Usage=====To use the module, the files svm.py and the shared library (namely svmc.soor svmc.dll) must be placed in the current directory, the python librarydirectory, or the directory where the environment variable PYTHONPATHpoints to. The user then imports everything in svm.py to use libsvm inpython:	from svm import *There are three classes in svm.py, namely svm_parameter, svm_problem, andsvm_model.svm_parameter is used to set the parameters of the trainingprocess. The attributes in svm_parameter include svm_type,kernel_type, degree, gamma, coef0, nu, cache_size, C, eps, p,shrinking, nr_weight, weight_label, and weight. Available svm typesinclude C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, and NU_SVR. Availablekernel types include LINEAR, POLY, RBF, and SIGMOID. The user cansetup the parameters with the constructor and keyword arguments:	param = svm_parameter(kernel_type = LINEAR, C = 10)The user can also modify the parameters later:	param.kernel_type = RBFsvm_problem is used to hold the training data for the problem. Theconstructor takes two arguments; the first of them is the list of labels,and the other is the list of samples. For example	prob = svm_problem([1,-1],[[1,0,1],[-1,0,-1]])or equivalently	prob = svm_problem([1,-1],[{1:1,3:1},{1:-1,3:-1}])Once the parameter and problem are ready, we can construct the model:	m = svm_model(prob, param)To conduct n-fold cross validation; predicted labels in the validationprocess are returned.	target = cross_validation(prob, param, n)To predict a new sample with the model:	r = m.predict([1, 1, 1])To obtain decision values of predicting a sample:	d = m.predict_values([1, 1, 1])	To predict a new sample and obtain probability estimates;return value is a dict that maps labels to probabilities.	prd, prb = m.predict_probability([1, 1, 1])	sample of prd : 1.0	sample of prb : {1:0.6, -1:0.4}To obtain sigma of the probability density function for regression;see ../README for the definition of the function.	sigma = m.get_svr_probability()To obtain the probability density function for regression; see../README for the definition of the function.	pdf = m.get_svr_pdf()	probability = pdf(z)To save the model to a file:	m.save('test.model')and to load the model from a file:	m = svm_model('test.model')Examples========There are two examples in this package. The one is svm_test.py, and theother is test_cross_validation.py.svm_test.py tests various kernels on a three-class problem withC-SVM. It also demonstrates how to obtain decision values andprobability estimates.test_cross_validation.py demonstrates loading data from a file anddoes a ten-fold cross validation on the heart_scale dataset. It makesuse of cross_validation.py which calls the C++ cross validationsubroutine.

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
蜜臀99久久精品久久久久久软件| 亚洲图片激情小说| 国产成人精品亚洲日本在线桃色 | 国产精品女主播在线观看| aaa国产一区| 午夜天堂影视香蕉久久| 日韩免费福利电影在线观看| 国产成人精品影视| 亚洲一区二区精品久久av| 3d动漫精品啪啪| 成人中文字幕在线| 午夜视频在线观看一区二区三区 | 久久久另类综合| av在线一区二区| 秋霞国产午夜精品免费视频| 日韩视频国产视频| 97精品久久久久中文字幕| 舔着乳尖日韩一区| 国产精品人妖ts系列视频| 欧美二区三区的天堂| 大胆欧美人体老妇| 秋霞电影网一区二区| 亚洲欧洲美洲综合色网| 精品噜噜噜噜久久久久久久久试看| 99视频精品全部免费在线| 麻豆精品一区二区三区| 亚洲激情在线播放| 久久久精品人体av艺术| 欧美一区二区三区四区视频| 91丝袜国产在线播放| 韩日精品视频一区| 偷窥少妇高潮呻吟av久久免费| 久久免费偷拍视频| 91麻豆精品国产91久久久 | 国产精品亚洲成人| 日韩黄色小视频| 亚洲精品一二三四区| 国产日韩在线不卡| 日韩午夜在线播放| 337p亚洲精品色噜噜噜| 日本精品免费观看高清观看| 福利一区福利二区| 国产在线不卡一区| 蜜桃精品视频在线| 亚洲第一精品在线| 亚洲一区在线观看免费| 亚洲欧洲在线观看av| 国产欧美日韩三区| 26uuu国产一区二区三区| 91精品国产综合久久久久久| 欧美日韩在线电影| 色综合久久久久综合体桃花网| 成人一区二区在线观看| 精品一二三四区| 捆绑变态av一区二区三区| 日韩精品一二三四| 婷婷夜色潮精品综合在线| 亚洲午夜电影在线观看| 一区二区三区 在线观看视频| 国产精品久久久久久一区二区三区| www国产成人免费观看视频 深夜成人网| 欧美一区二区成人6969| 日韩欧美国产精品一区| 欧美一二三四在线| 日韩三级免费观看| 在线免费观看一区| 91免费精品国自产拍在线不卡 | 在线免费观看日韩欧美| 欧洲一区二区三区在线| 欧美午夜片在线观看| 欧美日韩一级黄| 欧美zozozo| 2023国产精华国产精品| 国产亚洲女人久久久久毛片| 国产日韩综合av| 综合久久综合久久| 亚洲在线中文字幕| 首页国产欧美日韩丝袜| 精品影视av免费| 国产精品一区二区你懂的| 成人永久免费视频| 日本韩国一区二区三区视频| 91精品国产免费久久综合| 日韩欧美国产午夜精品| 国产日韩欧美激情| 亚洲精品中文在线| 日韩精品国产欧美| 国产精品乡下勾搭老头1| 成人精品鲁一区一区二区| 色美美综合视频| 欧美一区三区四区| 久久久99精品久久| 亚洲制服丝袜在线| 亚洲国产乱码最新视频 | 亚洲精品视频在线观看免费| 五月天欧美精品| 国产精品一二三四| 欧美亚洲动漫精品| 欧美mv和日韩mv的网站| 国产精品三级视频| 天涯成人国产亚洲精品一区av| 国产一区二区精品久久99| 91片黄在线观看| 日韩一级欧美一级| 亚洲乱码日产精品bd| 久久草av在线| 日本久久一区二区| 久久综合九色欧美综合狠狠| 亚洲另类在线一区| 国产自产高清不卡| 欧美优质美女网站| 久久精品人人做人人爽97| 亚洲高清视频的网址| 国产成人自拍在线| 欧美一三区三区四区免费在线看| 国产精品欧美一区二区三区| 日韩激情一区二区| 91猫先生在线| 久久精品亚洲精品国产欧美| 午夜激情综合网| 成人av中文字幕| 精品福利在线导航| 亚洲欧美日韩国产中文在线| 青青草成人在线观看| 色综合久久99| 欧美精品一区二区蜜臀亚洲| 亚洲欧美成人一区二区三区| 日本不卡一二三| 91免费视频网| 国产日韩精品一区二区三区在线| 亚洲成人自拍一区| av在线一区二区三区| 久久精品一区二区三区不卡牛牛| 蜜桃久久久久久久| 91精品国产一区二区三区蜜臀| 一区二区三区国产豹纹内裤在线| 成人黄色免费短视频| 精品国产乱码久久久久久浪潮| 亚洲高清免费观看高清完整版在线观看 | 欧美一区二区女人| 亚洲成a人在线观看| 91麻豆免费在线观看| 欧美激情综合五月色丁香| 国产一区二区在线观看视频| 69p69国产精品| 亚洲.国产.中文慕字在线| 色又黄又爽网站www久久| 中文字幕日本乱码精品影院| 国产成人av电影免费在线观看| 久久婷婷国产综合精品青草| 久久精品二区亚洲w码| 欧美一级艳片视频免费观看| 奇米一区二区三区| 91精品国产91久久久久久一区二区| 偷拍日韩校园综合在线| 91超碰这里只有精品国产| 亚洲观看高清完整版在线观看| 欧美中文字幕一区二区三区 | 亚洲男人的天堂网| 色av一区二区| 亚洲亚洲人成综合网络| 欧美日韩精品三区| 日本中文字幕一区二区视频| 欧美一区二区三区日韩| 麻豆国产精品视频| 精品国产免费久久| 岛国精品一区二区| 最近日韩中文字幕| 在线亚洲免费视频| 午夜a成v人精品| 日韩欧美国产麻豆| 国产成人aaa| 国产欧美一区二区精品性色超碰| 国产一区福利在线| 国产婷婷色一区二区三区| 国产成人精品亚洲日本在线桃色 | 一区二区三国产精华液| 欧美日韩高清一区| 精品综合久久久久久8888| 久久久久久久久久久久久久久99| 成人av免费在线| 亚洲综合在线电影| 欧美精品亚洲二区| 狠狠色丁香久久婷婷综合_中| 欧美高清在线精品一区| 日本精品裸体写真集在线观看| 亚洲乱码中文字幕| 91麻豆精品国产91久久久资源速度| 国产成人免费xxxxxxxx| 国产精品久久久久四虎| 欧美理论电影在线| 国产一区二区伦理片| 亚洲你懂的在线视频| 日韩欧美一级二级三级久久久| 国产激情一区二区三区四区| 一区二区三区高清| 久久一区二区视频| 色屁屁一区二区| 国产一区三区三区| 亚洲综合一二三区|