?? mat_rr.h
字號:
#ifndef NTL_mat_RR__H
#define NTL_mat_RR__H
#include <NTL/matrix.h>
#include <NTL/vec_vec_RR.h>
NTL_OPEN_NNS
NTL_matrix_decl(RR,vec_RR,vec_vec_RR,mat_RR)
NTL_io_matrix_decl(RR,vec_RR,vec_vec_RR,mat_RR)
NTL_eq_matrix_decl(RR,vec_RR,vec_vec_RR,mat_RR)
void add(mat_RR& X, const mat_RR& A, const mat_RR& B);
void sub(mat_RR& X, const mat_RR& A, const mat_RR& B);
void negate(mat_RR& X, const mat_RR& A);
void mul(mat_RR& X, const mat_RR& A, const mat_RR& B);
void mul(vec_RR& x, const mat_RR& A, const vec_RR& b);
void mul(vec_RR& x, const vec_RR& a, const mat_RR& B);
void mul(mat_RR& X, const mat_RR& A, const RR& b);
void mul(mat_RR& X, const mat_RR& A, double b);
inline void mul(mat_RR& X, const RR& a, const mat_RR& B)
{ mul(X, B, a); }
inline void mul(mat_RR& X, double a, const mat_RR& B)
{ mul(X, B, a); }
void ident(mat_RR& X, long n);
inline mat_RR ident_mat_RR(long n)
{ mat_RR X; ident(X, n); NTL_OPT_RETURN(mat_RR, X); }
void determinant(RR& d, const mat_RR& A);
long IsIdent(const mat_RR& A, long n);
void transpose(mat_RR& X, const mat_RR& A);
void solve(RR& d, vec_RR& X,
const mat_RR& A, const vec_RR& b);
void inv(RR& d, mat_RR& X, const mat_RR& A);
inline void sqr(mat_RR& X, const mat_RR& A)
{ mul(X, A, A); }
inline mat_RR sqr(const mat_RR& A)
{ mat_RR X; sqr(X, A); NTL_OPT_RETURN(mat_RR, X); }
void inv(mat_RR& X, const mat_RR& A);
inline mat_RR inv(const mat_RR& A)
{ mat_RR X; inv(X, A); NTL_OPT_RETURN(mat_RR, X); }
void power(mat_RR& X, const mat_RR& A, const ZZ& e);
inline mat_RR power(const mat_RR& A, const ZZ& e)
{ mat_RR X; power(X, A, e); NTL_OPT_RETURN(mat_RR, X); }
inline void power(mat_RR& X, const mat_RR& A, long e)
{ power(X, A, ZZ_expo(e)); }
inline mat_RR power(const mat_RR& A, long e)
{ mat_RR X; power(X, A, e); NTL_OPT_RETURN(mat_RR, X); }
void diag(mat_RR& X, long n, const RR& d);
inline mat_RR diag(long n, const RR& d)
{ mat_RR X; diag(X, n, d); NTL_OPT_RETURN(mat_RR, X); }
long IsDiag(const mat_RR& A, long n, const RR& d);
// miscellaneous:
RR determinant(const mat_RR& a);
// functional variant of determinant
inline mat_RR transpose(const mat_RR & a)
{ mat_RR x; transpose(x, a); NTL_OPT_RETURN(mat_RR, x); }
void clear(mat_RR& a);
// x = 0 (dimension unchanged)
long IsZero(const mat_RR& a);
// test if a is the zero matrix (any dimension)
// operator notation:
mat_RR operator+(const mat_RR& a, const mat_RR& b);
mat_RR operator-(const mat_RR& a, const mat_RR& b);
mat_RR operator*(const mat_RR& a, const mat_RR& b);
mat_RR operator-(const mat_RR& a);
// matrix/vector multiplication:
vec_RR operator*(const mat_RR& a, const vec_RR& b);
vec_RR operator*(const vec_RR& a, const mat_RR& b);
// matrix/scalar multiplication:
inline mat_RR operator*(const mat_RR& a, const RR& b)
{ mat_RR x; mul(x, a, b); NTL_OPT_RETURN(mat_RR, x); }
inline mat_RR operator*(const mat_RR& a, double b)
{ mat_RR x; mul(x, a, b); NTL_OPT_RETURN(mat_RR, x); }
inline mat_RR operator*(const RR& a, const mat_RR& b)
{ mat_RR x; mul(x, a, b); NTL_OPT_RETURN(mat_RR, x); }
inline mat_RR operator*(double a, const mat_RR& b)
{ mat_RR x; mul(x, a, b); NTL_OPT_RETURN(mat_RR, x); }
// assignment operator notation:
inline mat_RR& operator+=(mat_RR& x, const mat_RR& a)
{
add(x, x, a);
return x;
}
inline mat_RR& operator-=(mat_RR& x, const mat_RR& a)
{
sub(x, x, a);
return x;
}
inline mat_RR& operator*=(mat_RR& x, const mat_RR& a)
{
mul(x, x, a);
return x;
}
inline mat_RR& operator*=(mat_RR& x, const RR& a)
{
mul(x, x, a);
return x;
}
inline mat_RR& operator*=(mat_RR& x, double a)
{
mul(x, x, a);
return x;
}
inline vec_RR& operator*=(vec_RR& x, const mat_RR& a)
{
mul(x, x, a);
return x;
}
NTL_CLOSE_NNS
#endif
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -