?? zzx.h
字號:
inline ZZX operator-(const ZZX& a, const ZZ& b)
{ ZZX x; sub(x, a, b); NTL_OPT_RETURN(ZZX, x); }
inline ZZX operator-(const ZZX& a, long b)
{ ZZX x; sub(x, a, b); NTL_OPT_RETURN(ZZX, x); }
inline ZZX operator-(const ZZ& a, const ZZX& b)
{ ZZX x; sub(x, a, b); NTL_OPT_RETURN(ZZX, x); }
inline ZZX operator-(long a, const ZZX& b)
{ ZZX x; sub(x, a, b); NTL_OPT_RETURN(ZZX, x); }
inline ZZX& operator+=(ZZX& x, const ZZX& b)
{ add(x, x, b); return x; }
inline ZZX& operator+=(ZZX& x, const ZZ& b)
{ add(x, x, b); return x; }
inline ZZX& operator+=(ZZX& x, long b)
{ add(x, x, b); return x; }
inline ZZX& operator-=(ZZX& x, const ZZX& b)
{ sub(x, x, b); return x; }
inline ZZX& operator-=(ZZX& x, const ZZ& b)
{ sub(x, x, b); return x; }
inline ZZX& operator-=(ZZX& x, long b)
{ sub(x, x, b); return x; }
inline ZZX operator-(const ZZX& a)
{ ZZX x; negate(x, a); NTL_OPT_RETURN(ZZX, x); }
inline ZZX& operator++(ZZX& x) { add(x, x, 1); return x; }
inline void operator++(ZZX& x, int) { add(x, x, 1); }
inline ZZX& operator--(ZZX& x) { sub(x, x, 1); return x; }
inline void operator--(ZZX& x, int) { sub(x, x, 1); }
/*****************************************************************
Multiplication
******************************************************************/
void mul(ZZX& x, const ZZX& a, const ZZX& b);
// x = a * b
void sqr(ZZX& x, const ZZX& a);
inline ZZX sqr(const ZZX& a)
{ ZZX x; sqr(x, a); NTL_OPT_RETURN(ZZX, x); }
// x = a^2
void PlainMul(ZZX& x, const ZZX& a, const ZZX& b);
void PlainSqr(ZZX& x, const ZZX& a);
void KarMul(ZZX& x, const ZZX& a, const ZZX& b);
void KarSqr(ZZX& x, const ZZX& a);
void HomMul(ZZX& x, const ZZX& a, const ZZX& b);
void HomSqr(ZZX& x, const ZZX& a);
void SSMul(ZZX& x, const ZZX& a, const ZZX& b);
void SSSqr(ZZX& x, const ZZX& a);
double SSRatio(long na, long maxa, long nb, long maxb);
void mul(ZZX & x, const ZZX& a, const ZZ& b);
void mul(ZZX& x, const ZZX& a, long b);
inline void mul(ZZX& x, const ZZ& a, const ZZX& b) { mul(x, b, a); }
inline void mul(ZZX& x, long a, const ZZX& b) { mul(x, b, a); }
inline ZZX operator*(const ZZX& a, const ZZX& b)
{ ZZX x; mul(x, a, b); NTL_OPT_RETURN(ZZX, x); }
inline ZZX operator*(const ZZX& a, const ZZ& b)
{ ZZX x; mul(x, a, b); NTL_OPT_RETURN(ZZX, x); }
inline ZZX operator*(const ZZX& a, long b)
{ ZZX x; mul(x, a, b); NTL_OPT_RETURN(ZZX, x); }
inline ZZX operator*(const ZZ& a, const ZZX& b)
{ ZZX x; mul(x, a, b); NTL_OPT_RETURN(ZZX, x); }
inline ZZX operator*(long a, const ZZX& b)
{ ZZX x; mul(x, a, b); NTL_OPT_RETURN(ZZX, x); }
inline ZZX& operator*=(ZZX& x, const ZZX& b)
{ mul(x, x, b); return x; }
inline ZZX& operator*=(ZZX& x, const ZZ& b)
{ mul(x, x, b); return x; }
inline ZZX& operator*=(ZZX& x, long b)
{ mul(x, x, b); return x; }
/*************************************************************
Division
**************************************************************/
// "plain" versions
void PlainPseudoDivRem(ZZX& q, ZZX& r, const ZZX& a, const ZZX& b);
void PlainPseudoDiv(ZZX& q, const ZZX& a, const ZZX& b);
void PlainPseudoRem(ZZX& r, const ZZX& a, const ZZX& b);
// "homomorphic imaging" versions
void HomPseudoDivRem(ZZX& q, ZZX& r, const ZZX& a, const ZZX& b);
void HomPseudoDiv(ZZX& q, const ZZX& a, const ZZX& b);
void HomPseudoRem(ZZX& r, const ZZX& a, const ZZX& b);
inline void PseudoDivRem(ZZX& q, ZZX& r, const ZZX& a, const ZZX& b)
// performs pseudo-division: computes q and r
// with deg(r) < deg(b), and LeadCoeff(b)^(deg(a)-deg(b)+1) a = b q + r.
// current implementation always defaults to "plain"
{ PlainPseudoDivRem(q, r, a, b); }
inline void PseudoDiv(ZZX& q, const ZZX& a, const ZZX& b)
{ PlainPseudoDiv(q, a, b); }
inline void PseudoRem(ZZX& r, const ZZX& a, const ZZX& b)
{ PlainPseudoRem(r, a, b); }
inline ZZX PseudoDiv(const ZZX& a, const ZZX& b)
{ ZZX x; PseudoDiv(x, a, b); NTL_OPT_RETURN(ZZX, x); }
inline ZZX PseudoRem(const ZZX& a, const ZZX& b)
{ ZZX x; PseudoRem(x, a, b); NTL_OPT_RETURN(ZZX, x); }
#ifndef NTL_TRANSITION
void DivRem(ZZX& q, ZZX& r, const ZZX& a, const ZZX& b);
void div(ZZX& q, const ZZX& a, const ZZX& b);
void div(ZZX& q, const ZZX& a, const ZZ& b);
void div(ZZX& q, const ZZX& a, long b);
void rem(ZZX& r, const ZZX& a, const ZZX& b);
inline ZZX operator/(const ZZX& a, const ZZX& b)
{ ZZX x; div(x, a, b); NTL_OPT_RETURN(ZZX, x); }
inline ZZX operator/(const ZZX& a, const ZZ& b)
{ ZZX x; div(x, a, b); NTL_OPT_RETURN(ZZX, x); }
inline ZZX operator/(const ZZX& a, long b)
{ ZZX x; div(x, a, b); NTL_OPT_RETURN(ZZX, x); }
inline ZZX& operator/=(ZZX& x, const ZZ& b)
{ div(x, x, b); return x; }
inline ZZX& operator/=(ZZX& x, long b)
{ div(x, x, b); return x; }
inline ZZX& operator/=(ZZX& x, const ZZX& b)
{ div(x, x, b); return x; }
inline ZZX operator%(const ZZX& a, const ZZX& b)
{ ZZX x; rem(x, a, b); NTL_OPT_RETURN(ZZX, x); }
inline ZZX& operator%=(ZZX& x, const ZZX& b)
{ rem(x, x, b); return x; }
#endif
// Modular arithemtic---f must be monic, and other args
// must have degree less than that of f
void MulMod(ZZX& x, const ZZX& a, const ZZX& b, const ZZX& f);
inline ZZX MulMod(const ZZX& a, const ZZX& b, const ZZX& f)
{ ZZX x; MulMod(x, a, b, f); NTL_OPT_RETURN(ZZX, x); }
void SqrMod(ZZX& x, const ZZX& a, const ZZX& f);
inline ZZX SqrMod(const ZZX& a, const ZZX& f)
{ ZZX x; SqrMod(x, a, f); NTL_OPT_RETURN(ZZX, x); }
void MulByXMod(ZZX& x, const ZZX& a, const ZZX& f);
inline ZZX MulByXMod(const ZZX& a, const ZZX& f)
{ ZZX x; MulByXMod(x, a, f); NTL_OPT_RETURN(ZZX, x); }
// these always use "plain" division
long PlainDivide(ZZX& q, const ZZX& a, const ZZX& b);
long PlainDivide(const ZZX& a, const ZZX& b);
// these always use "homomorphic imaging"
long HomDivide(ZZX& q, const ZZX& a, const ZZX& b);
long HomDivide(const ZZX& a, const ZZX& b);
long divide(ZZX& q, const ZZX& a, const ZZX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
long divide(const ZZX& a, const ZZX& b);
long divide(ZZX& q, const ZZX& a, const ZZ& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
long divide(const ZZX& a, const ZZ& b);
// if b | a, returns 1; otherwise returns 0
//single-precision versions
long divide(ZZX& q, const ZZX& a, long b);
long divide(const ZZX& a, long b);
void content(ZZ& d, const ZZX& f);
// d = content of f, sign(d) == sign(LeadCoeff(f))
inline ZZ content(const ZZX& f)
{ ZZ x; content(x, f); NTL_OPT_RETURN(ZZ, x); }
void PrimitivePart(ZZX& pp, const ZZX& f);
// pp = primitive part of f, LeadCoeff(pp) >= 0
inline ZZX PrimitivePart(const ZZX& f)
{ ZZX x; PrimitivePart(x, f); NTL_OPT_RETURN(ZZX, x); }
void GCD(ZZX& d, const ZZX& a, const ZZX& b);
// d = gcd(a, b), LeadCoeff(d) >= 0
inline ZZX GCD(const ZZX& a, const ZZX& b)
{ ZZX x; GCD(x, a, b); NTL_OPT_RETURN(ZZX, x); }
long MaxBits(const ZZX& f);
// returns max NumBits of coefficients of f
long CharPolyBound(const ZZX& a, const ZZX& f);
/***************************************************************
traces, norms, resultants
****************************************************************/
void TraceVec(vec_ZZ& S, const ZZX& f);
// S[i] = Trace(X^i mod f), for i = 0..deg(f)-1.
// f must be a monic polynomial.
inline vec_ZZ TraceVec(const ZZX& f)
{ vec_ZZ x; TraceVec(x, f); NTL_OPT_RETURN(vec_ZZ, x); }
void TraceMod(ZZ& res, const ZZX& a, const ZZX& f);
inline ZZ TraceMod(const ZZX& a, const ZZX& f)
{ ZZ x; TraceMod(x, a, f); NTL_OPT_RETURN(ZZ, x); }
// res = trace of (a mod f)
// f must be monic
void resultant(ZZ& res, const ZZX& a, const ZZX& b, long deterministic=0);
inline ZZ resultant(const ZZX& a, const ZZX& b, long deterministic=0)
{ ZZ x; resultant(x, a, b, deterministic); NTL_OPT_RETURN(ZZ, x); }
// res = resultant of a and b
// if !deterministic, then it may use a randomized strategy
// that errs with probability no more than 2^{-80}.
void NormMod(ZZ& res, const ZZX& a, const ZZX& f, long deterministic=0);
inline ZZ NormMod(const ZZX& a, const ZZX& f, long deterministic=0)
{ ZZ x; NormMod(x, a, f, deterministic); NTL_OPT_RETURN(ZZ, x); }
// res = norm of (a mod f)
// f must be monic
// if !deterministic, then it may use a randomized strategy
// that errs with probability no more than 2^{-80}.
void discriminant(ZZ& d, const ZZX& a, long deterministic=0);
inline ZZ discriminant(const ZZX& a, long deterministic=0)
{ ZZ x; discriminant(x, a, deterministic); NTL_OPT_RETURN(ZZ, x); }
// d = discriminant of a
// = (-1)^{m(m-1)/2} resultant(a, a')/lc(a),
// where m = deg(a)
// if !deterministic, then it may use a randomized strategy
// that errs with probability no more than 2^{-80}.
void CharPolyMod(ZZX& g, const ZZX& a, const ZZX& f, long deterministic=0);
inline ZZX CharPolyMod(const ZZX& a, const ZZX& f, long deterministic=0)
{ ZZX x; CharPolyMod(x, a, f, deterministic); NTL_OPT_RETURN(ZZX, x); }
// g = char poly of (a mod f)
// f must be monic
// if !deterministic, then it may use a randomized strategy
// that errs with probability no more than 2^{-80}.
void MinPolyMod(ZZX& g, const ZZX& a, const ZZX& f);
inline ZZX MinPolyMod(const ZZX& a, const ZZX& f)
{ ZZX x; MinPolyMod(x, a, f); NTL_OPT_RETURN(ZZX, x); }
// g = min poly of (a mod f)
// f must be monic
// may use a probabilistic strategy that errs with
// probability no more than 2^{-80}
void XGCD(ZZ& r, ZZX& s, ZZX& t, const ZZX& a, const ZZX& b,
long deterministic=0);
// r = resultant of a and b;
// if r != 0, then computes s and t such that:
// a*s + b*t = r;
// otherwise s and t not affected.
// if !deterministic, then resultant computation may use a randomized strategy
// that errs with probability no more than 2^{-80}.
/******************************************************
Incremental Chinese Remaindering
*******************************************************/
long CRT(ZZX& a, ZZ& prod, const zz_pX& A);
long CRT(ZZX& a, ZZ& prod, const ZZ_pX& A);
// If p is the current modulus with (p, prod) = 1;
// Computes b such that b = a mod prod and b = A mod p,
// with coefficients in the interval (-p*prod/2, p*prod/2];
// Sets a = b, prod = p*prod, and returns 1 if a's value changed.
// vectors
NTL_vector_decl(ZZX,vec_ZZX)
NTL_eq_vector_decl(ZZX,vec_ZZX)
NTL_io_vector_decl(ZZX,vec_ZZX)
NTL_CLOSE_NNS
#endif
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -