亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? createdemodatabases.m

?? BOOSTING DEMO, A VERY USEFUL DEMO FOR ADABOOST
?? M
字號:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This is the script used to generate the datasets provided with this demo.
% You do not need to run this. 
% This datasets are a subset of the LabelMe database.
%
% The full dataset can be download here:
% http://people.csail.mit.edu/brussell/research/LabelMe/intro.html
%
% If you want to train a new object detector, you can find training data
% for many object categories from the LabelMe database online. Then, you
% need to modify the file 'parameters.m' to provide the paths to the images
% and annotations and to indicate the object name you want to use. After
% that, you can run the program createDatabases.m to read the annotations.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all
close all
parameters

% This list is build to select from the dataset only objects with a
% specific viewpoint and without occlusions. Other queries can generate
% a more diverse set of object poses and conditions.
% The dataset will contain three labeled objects. The original LabelMe dataset
% contains hundreds of object categories.
demoObjects = 'screen+frontal-part,car+side-part-ocluded-occluded-front-back-moving';

% Define the root folder for the LabelMe full database  
LabelMeHOMEIMAGES = 'C:\atb\Databases\CSAILobjectsAndScenes\Images'; % you can set here your default folder
LabelMeHOMEANNOTATIONS = 'C:\atb\DATABASES\LabelMe\Annotations'; % you can set here your default folder

% Load the annotations and create a struct with all the information
database = LMdatabase(LabelMeHOMEANNOTATIONS);

% This shows all the objects present in the dataset and counts the number
% of instances:
[names, counts] =  LMobjectnames(database); % show counts

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Now we are going to create a new database, by extracting from the full
% database only the images that contain the target of interest and also by
% normalizing the images. The original images are too big and detection
% would be too slow. So, we will reduce their size by cropping and scaling 
% the original imageswhile making sure that the target has some fixed
% size to insure that the detector will work.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Locate the images that contain at least one of the objects of interest labeled
disp('Select objects of interest from LabelMe database')
[D,j]  = LMquery(database, 'object.name', demoObjects);
[D,j]  = LMquery(D, 'object.deleted', '0'); % remove deleted polygons
[names, counts] =  LMobjectnames(D, 'plot'); % show counts
LMdbshowscenes(D(fix(linspace(1, length(D), 30))), LabelMeHOMEIMAGES); % show some images with labels

% Cook database to fit our requirements: 
% For this demo, we will use objects at a single scale. But you can change
% easily the code to make it work with multiple scales.
% The output of this function is a new database with normalized images:
LMcookdatabase(D, ...
    LabelMeHOMEIMAGES, LabelMeHOMEANNOTATIONS, ...   % This specifies the folders with the full dataset
    HOMEIMAGES, HOMEANNOTATIONS, ...                 % This points to the new folders to be created
    'objectname', demoObjects, ...                       % This is the object that will drive the image normalization
    'objectsize', normalizedObjectSize, ...          % This specifies the desired object size in the normalized images
    'objectlocation', 'original', ...                % This specifies how to modify the location of the object in the new images (in this case, it will keep the center coordinates of the object in the same proportional location than in the original image)
    'maximagesize', testImageSize)               % This specifies the maximum image size for the normalized images




?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国精品**一区二区三区在线蜜桃| 青娱乐精品视频| 国模套图日韩精品一区二区| 99精品国产一区二区三区不卡| 56国语精品自产拍在线观看| 亚洲四区在线观看| 精久久久久久久久久久| 日韩欧美在线综合网| 免费成人在线视频观看| 久久久久久久久久电影| 国产在线麻豆精品观看| 亚洲人成在线播放网站岛国 | 91精选在线观看| 日本精品视频一区二区三区| 中文字幕一区av| 欧美亚洲动漫另类| 免费黄网站欧美| 国产精品久久久久久久久快鸭 | 亚洲国产精品一区二区www在线| 欧美日韩视频一区二区| 韩国精品主播一区二区在线观看| 亚洲精品在线电影| 色综合视频在线观看| 手机精品视频在线观看| 国产精品热久久久久夜色精品三区| 97se亚洲国产综合在线| 精品综合免费视频观看| 尤物视频一区二区| 国产偷v国产偷v亚洲高清| 在线精品视频一区二区| 丁香六月久久综合狠狠色| 美女尤物国产一区| 亚洲狠狠爱一区二区三区| 国产精品女上位| 精品久久久久一区| 91精品国产综合久久久久| www.一区二区| 成人国产视频在线观看| 国产一区二区美女| 久久精品国产99久久6| 丝袜诱惑制服诱惑色一区在线观看| 国产精品国模大尺度视频| 精品电影一区二区| 6080国产精品一区二区| 制服.丝袜.亚洲.另类.中文 | 久久精品久久99精品久久| 亚洲精品久久久久久国产精华液| 欧美激情中文字幕一区二区| 日韩欧美亚洲一区二区| 欧美日韩电影在线| 欧美一区二区三区免费大片| 91精品国产综合久久久蜜臀图片 | 欧美日韩成人在线一区| 91九色02白丝porn| 在线观看欧美日本| 666欧美在线视频| 精品国精品自拍自在线| 久久久午夜电影| 中文字幕第一页久久| 亚洲色欲色欲www| 亚洲成人av一区二区三区| 视频一区二区三区中文字幕| 蜜桃精品在线观看| 国产成人一区在线| 在线视频一区二区三| 欧美一区二区三区四区视频| 精品盗摄一区二区三区| 最新久久zyz资源站| 日本中文一区二区三区| 成人午夜激情在线| 337p亚洲精品色噜噜噜| 国产精品国产自产拍在线| 亚洲自拍偷拍网站| 国产成人99久久亚洲综合精品| 色婷婷精品大视频在线蜜桃视频 | av毛片久久久久**hd| 在线播放国产精品二区一二区四区| 日韩一区二区三免费高清| 日本一区二区在线不卡| 亚洲电影第三页| www.日本不卡| 精品国产伦一区二区三区观看体验| 成人免费视频在线观看| 看片网站欧美日韩| 欧美剧情电影在线观看完整版免费励志电影 | 亚洲小说春色综合另类电影| 国产成人精品亚洲午夜麻豆| 欧美乱妇15p| 亚洲综合一二区| 99久久久国产精品| 国产日本欧美一区二区| 成人免费不卡视频| 日韩欧美一级精品久久| 亚洲一区二区中文在线| 91在线播放网址| 国产精品久久久99| 粉嫩一区二区三区性色av| 久久亚洲精华国产精华液 | 亚洲天堂av一区| 91在线视频观看| 亚洲免费观看高清完整| 91免费在线看| 夜夜嗨av一区二区三区四季av| 一本在线高清不卡dvd| 亚洲精品va在线观看| 91久久国产综合久久| 亚洲福利一区二区| 精品理论电影在线| 国产成人亚洲精品狼色在线| 中文字幕佐山爱一区二区免费| 色综合一个色综合亚洲| 亚洲成人激情综合网| 91麻豆精品久久久久蜜臀| 国产主播一区二区三区| 中文字幕av不卡| 欧美综合欧美视频| 奇米777欧美一区二区| 国产欧美日韩另类一区| 一本高清dvd不卡在线观看| 日本特黄久久久高潮| 亚洲国产视频直播| 国产女人18毛片水真多成人如厕 | 国产不卡视频一区二区三区| 亚洲精品国产a| 国产午夜三级一区二区三| 99riav久久精品riav| 国产一区二区三区免费在线观看| 一区在线观看视频| 精品国产91洋老外米糕| 欧美综合久久久| 成人福利视频在线| 青青草国产精品97视觉盛宴| 亚洲柠檬福利资源导航| 久久午夜色播影院免费高清| 欧美日本一道本在线视频| 99久久免费视频.com| 国产精品18久久久久久久久| 日本伊人精品一区二区三区观看方式| 国产精品网站一区| 精品国内片67194| 日韩一区二区不卡| 欧美日韩在线直播| 日本久久一区二区| 在线国产亚洲欧美| 91激情在线视频| 欧美日韩一区二区三区在线看| 成人激情av网| 色妞www精品视频| 日本伦理一区二区| 欧美色综合天天久久综合精品| 91麻豆精品在线观看| 久久婷婷成人综合色| 国产亚洲精品中文字幕| 国产精品久久久久久久久果冻传媒| 国产女主播在线一区二区| 中文字幕亚洲在| 亚洲午夜精品在线| 青青草成人在线观看| 免费视频一区二区| 国产成人一区二区精品非洲| 972aa.com艺术欧美| 在线成人小视频| 中文字幕乱码久久午夜不卡| 国产精品成人在线观看| 亚洲国产精品久久久久婷婷884 | 亚洲一区二区在线视频| 五月开心婷婷久久| 国产精品一区二区视频| 欧美亚洲国产一区二区三区 | 精品亚洲成a人| 99精品一区二区| 欧美成人国产一区二区| 中文字幕在线不卡视频| 麻豆极品一区二区三区| 91麻豆.com| 久久精品免费在线观看| 国产成人综合亚洲91猫咪| 色综合久久精品| 欧美高清在线精品一区| 奇米影视一区二区三区| 99久久精品国产一区二区三区| 日韩一二在线观看| 亚洲成国产人片在线观看| 成人av电影在线网| 精品久久久久久久久久久院品网| 亚洲电影视频在线| 色婷婷久久99综合精品jk白丝| 欧美激情一区二区三区不卡 | 毛片基地黄久久久久久天堂| 97aⅴ精品视频一二三区| 国产精品情趣视频| 国产麻豆精品在线| 久久久精品日韩欧美| 麻豆精品久久久| 日韩三级视频在线看| 日本不卡一区二区三区| 欧美一区二区高清| 美女看a上一区| 久久亚洲综合av| 成人免费观看av|