亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? gda.html

?? 用matlab實現的統計模式識別工具箱
?? HTML
字號:
<html><head>  <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1">  <title>gda.m</title><link rel="stylesheet" type="text/css" href="../../../m-syntax.css"></head><body><code><span class=defun_kw>function</span>&nbsp;<span class=defun_out>model&nbsp;</span>=&nbsp;<span class=defun_name>gda</span>(<span class=defun_in>data,options</span>)
<br><span class=h1>%&nbsp;GDA&nbsp;Generalized&nbsp;Discriminant&nbsp;Analysis.
</span><br><span class=help>%&nbsp;
</span><br><span class=help>%&nbsp;<span class=help_field>Synopsis:</span></span><br><span class=help>%&nbsp;&nbsp;model&nbsp;=&nbsp;gda(data)
</span><br><span class=help>%&nbsp;&nbsp;model&nbsp;=&nbsp;gda(data,options)
</span><br><span class=help>%&nbsp;
</span><br><span class=help>%&nbsp;<span class=help_field>Description:</span></span><br><span class=help>%&nbsp;&nbsp;This&nbsp;function&nbsp;is&nbsp;implimentation&nbsp;of&nbsp;the&nbsp;Generalized&nbsp;Discriminant
</span><br><span class=help>%&nbsp;&nbsp;Analysis&nbsp;(GDA)&nbsp;[Baudat01].&nbsp;The&nbsp;GDA&nbsp;is&nbsp;kernelized&nbsp;version&nbsp;of
</span><br><span class=help>%&nbsp;&nbsp;the&nbsp;Linear&nbsp;Discriminant&nbsp;Analysis&nbsp;(LDA).&nbsp;It&nbsp;produce&nbsp;the&nbsp;kernel&nbsp;data
</span><br><span class=help>%&nbsp;&nbsp;projection&nbsp;which&nbsp;increases&nbsp;class&nbsp;separability&nbsp;of&nbsp;the&nbsp;projected&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;training&nbsp;data.
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;<span class=help_field>Input:</span></span><br><span class=help>%&nbsp;&nbsp;data&nbsp;[struct]&nbsp;Labeled&nbsp;training&nbsp;data:
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.X&nbsp;[dim&nbsp;x&nbsp;num_data]&nbsp;Training&nbsp;vectors.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.y&nbsp;[1&nbsp;x&nbsp;num_data]&nbsp;Labels&nbsp;(1,2,..,mclass).
</span><br><span class=help>%&nbsp;&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;options&nbsp;[struct]&nbsp;Defines&nbsp;kernel&nbsp;and&nbsp;a&nbsp;output&nbsp;dimension:
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.ker&nbsp;[string]&nbsp;Kernel&nbsp;identifier&nbsp;(default&nbsp;'linear');&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;see&nbsp;'help&nbsp;kernel'&nbsp;for&nbsp;more&nbsp;info.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.arg&nbsp;[1&nbsp;x&nbsp;nargs]&nbsp;Kernel&nbsp;arguments&nbsp;(default&nbsp;1).
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.new_dim&nbsp;[1x1]&nbsp;Output&nbsp;dimension&nbsp;(default&nbsp;dim).
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;<span class=help_field>Output:</span></span><br><span class=help>%&nbsp;&nbsp;model&nbsp;[struct]&nbsp;Kernel&nbsp;projection:
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.Alpha&nbsp;[num_data&nbsp;x&nbsp;new_dim]&nbsp;Multipliers.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.b&nbsp;[new_dim&nbsp;x&nbsp;1]&nbsp;Bias.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.sv.X&nbsp;[dim&nbsp;x&nbsp;num_data]&nbsp;Training&nbsp;data.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.options&nbsp;[struct]&nbsp;Copy&nbsp;of&nbsp;used&nbsp;options.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.rankK&nbsp;[int]&nbsp;Rank&nbsp;of&nbsp;centered&nbsp;kernel&nbsp;matrix.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.nsv&nbsp;[int]&nbsp;Number&nbsp;of&nbsp;training&nbsp;data.
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;<span class=help_field>Example:</span></span><br><span class=help>%&nbsp;&nbsp;in_data&nbsp;=&nbsp;load('iris');
</span><br><span class=help>%&nbsp;&nbsp;model&nbsp;=&nbsp;gda(in_data,struct('ker','rbf','arg',1));
</span><br><span class=help>%&nbsp;&nbsp;out_data&nbsp;=&nbsp;kernelproj(&nbsp;in_data,&nbsp;model&nbsp;);
</span><br><span class=help>%&nbsp;&nbsp;figure;&nbsp;ppatterns(&nbsp;out_data&nbsp;);
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;See&nbsp;also&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;KERNELPROJ,&nbsp;KPCA.
</span><br><span class=help>%
</span><br><hr><br><span class=help1>%&nbsp;<span class=help1_field>About:</span>&nbsp;Statistical&nbsp;Pattern&nbsp;Recognition&nbsp;Toolbox
</span><br><span class=help1>%&nbsp;(C)&nbsp;1999-2003,&nbsp;Written&nbsp;by&nbsp;Vojtech&nbsp;Franc&nbsp;and&nbsp;Vaclav&nbsp;Hlavac
</span><br><span class=help1>%&nbsp;&lt;a&nbsp;href="http://www.cvut.cz"&gt;Czech&nbsp;Technical&nbsp;University&nbsp;Prague&lt;/a&gt;
</span><br><span class=help1>%&nbsp;&lt;a&nbsp;href="http://www.feld.cvut.cz"&gt;Faculty&nbsp;of&nbsp;Electrical&nbsp;Engineering&lt;/a&gt;
</span><br><span class=help1>%&nbsp;&lt;a&nbsp;href="http://cmp.felk.cvut.cz"&gt;Center&nbsp;for&nbsp;Machine&nbsp;Perception&lt;/a&gt;
</span><br><br><span class=help1>%&nbsp;<span class=help1_field>Modifications:</span>
</span><br><span class=help1>%&nbsp;24-may-2004,&nbsp;VF
</span><br><span class=help1>%&nbsp;4-may-2004,&nbsp;VF
</span><br><br><br><hr><span class=comment>%&nbsp;process&nbsp;input&nbsp;arguments
</span><br><span class=comment>%-----------------------------
</span><br>
<br><span class=comment>%&nbsp;allos&nbsp;data&nbsp;to&nbsp;be&nbsp;given&nbsp;as&nbsp;a&nbsp;cell
</span><br>data=c2s(data);
<br>
<br><span class=comment>%&nbsp;get&nbsp;dimensions
</span><br>[dim,num_data]=size(data.X);
<br>nclass&nbsp;=&nbsp;max(data.y);
<br>
<br><span class=keyword>if</span>&nbsp;<span class=stack>nargin</span>&nbsp;&lt;&nbsp;2,&nbsp;options=[];&nbsp;<span class=keyword>else</span>&nbsp;options=c2s(options);&nbsp;<span class=keyword>end</span>
<br><span class=keyword>if</span>&nbsp;~isfield(options,&nbsp;<span class=quotes>'ker'</span>),&nbsp;options.ker&nbsp;=&nbsp;<span class=quotes>'linear'</span>;&nbsp;<span class=keyword>end</span>
<br><span class=keyword>if</span>&nbsp;~isfield(options,&nbsp;<span class=quotes>'arg'</span>),&nbsp;options.arg&nbsp;=&nbsp;1;&nbsp;<span class=keyword>end</span>
<br><span class=keyword>if</span>&nbsp;~isfield(options,&nbsp;<span class=quotes>'new_dim'</span>),&nbsp;options.new_dim&nbsp;=&nbsp;dim;&nbsp;<span class=keyword>end</span>
<br>
<br><span class=comment>%&nbsp;sort&nbsp;data&nbsp;according&nbsp;to&nbsp;labels
</span><br>[tmp,inx]&nbsp;=&nbsp;sort(data.y);
<br>data.y=data.y(inx);
<br>data.X=data.X(:,inx);
<br>
<br><span class=comment>%&nbsp;kernel&nbsp;matrix
</span><br>K&nbsp;=&nbsp;kernel(&nbsp;data.X,&nbsp;options.ker,&nbsp;options.arg&nbsp;);
<br>
<br><span class=comment>%&nbsp;centering&nbsp;matrix
</span><br>J=ones(num_data,num_data)/num_data;
<br>JK&nbsp;=&nbsp;J*K;
<br>
<br><span class=comment>%&nbsp;centering&nbsp;data&nbsp;in&nbsp;non-linear&nbsp;space
</span><br>Kc&nbsp;=&nbsp;K&nbsp;-&nbsp;JK'&nbsp;-&nbsp;JK&nbsp;+&nbsp;JK*J;
<br>
<br><span class=comment>%&nbsp;Kc&nbsp;decomposition;&nbsp;Kc&nbsp;=&nbsp;P*Gamma*P'
</span><br>[P,&nbsp;Gamma]=eig(&nbsp;Kc&nbsp;);
<br>Gamma=diag(Gamma);
<br>[tmp,inx]=sort(Gamma);&nbsp;<span class=comment>%&nbsp;sort&nbsp;eigenvalues&nbsp;in&nbsp;ascending&nbsp;order
</span><br>inx=inx([num_data:-1:1]);&nbsp;<span class=comment>%&nbsp;swap&nbsp;indices
</span><br>Gamma=Gamma(inx);
<br>P=P(:,inx);
<br>
<br><span class=comment>%&nbsp;removes&nbsp;eigenvectors&nbsp;with&nbsp;small&nbsp;value
</span><br>minEigv&nbsp;=&nbsp;Gamma(1,1)/1000;
<br>inx&nbsp;=&nbsp;find(&nbsp;Gamma&nbsp;&gt;=&nbsp;minEigv&nbsp;);
<br>P=P(:,inx);
<br>Gamma=Gamma(inx);
<br>rankKc&nbsp;=&nbsp;length(inx);
<br>
<br>Kc&nbsp;=&nbsp;P*diag(Gamma)*P';
<br>
<br><span class=comment>%&nbsp;make&nbsp;diagonal&nbsp;block&nbsp;matrix&nbsp;W
</span><br>W=[];
<br><span class=keyword>for</span>&nbsp;i=1:nclass,
<br>&nbsp;&nbsp;num_data_class=length(find(data.y==i));
<br>&nbsp;&nbsp;W=blkdiag(W,ones(num_data_class)/num_data_class);
<br><span class=keyword>end</span>&nbsp;&nbsp;
<br>
<br><span class=comment>%&nbsp;new&nbsp;dimension&nbsp;of&nbsp;data
</span><br>model.new_dim=min([options.new_dim,&nbsp;rankKc,&nbsp;nclass-1]);
<br>
<br><span class=comment>%&nbsp;compute&nbsp;vector&nbsp;alpha&nbsp;and&nbsp;its&nbsp;normalization&nbsp;
</span><br>[Beta,&nbsp;Lambda]&nbsp;=&nbsp;eig(&nbsp;P'*W*P&nbsp;);
<br>Lambda=diag(Lambda);
<br>[tmp,inx]=sort(Lambda);&nbsp;&nbsp;<span class=comment>%&nbsp;sort&nbsp;eigenvalues&nbsp;in&nbsp;ascending&nbsp;order
</span><br>inx=inx([length(Lambda):-1:1]);&nbsp;&nbsp;<span class=comment>%&nbsp;swap&nbsp;indices
</span><br>Lambda=Lambda(inx);
<br>Beta=Beta(:,inx(1:model.new_dim));
<br>
<br><span class=comment>%model.Alpha=P*inv(diag(Gamma))*Beta;
</span><br>model.Alpha=P*diag(1./Gamma)*Beta;
<br>
<br><span class=comment>%&nbsp;normalization&nbsp;of&nbsp;vectors&nbsp;Alpha
</span><br><span class=keyword>for</span>&nbsp;i=1:model.new_dim,
<br>&nbsp;&nbsp;model.Alpha(:,i)&nbsp;=&nbsp;model.Alpha(:,i)/...
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;sqrt(model.Alpha(:,i)'*&nbsp;Kc&nbsp;*&nbsp;model.Alpha(:,i));
<br><span class=keyword>end</span>
<br>
<br><span class=comment>%&nbsp;centering&nbsp;Alpha&nbsp;and&nbsp;computing&nbsp;Bias
</span><br>sumK=sum(K);
<br>model.b=(-sumK*model.Alpha/num_data+...
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;sum(model.Alpha)*sum(sumK)/num_data^2)';&nbsp;
<br>
<br><span class=keyword>for</span>&nbsp;i=1:size(model.Alpha,2),
<br>&nbsp;&nbsp;model.Alpha(:,i)&nbsp;=&nbsp;model.Alpha(:,i)-sum(model.Alpha(:,i))/num_data;
<br><span class=keyword>end</span>
<br>
<br><span class=comment>%&nbsp;fill&nbsp;model
</span><br>model.options&nbsp;=&nbsp;options;
<br>model.sv&nbsp;=&nbsp;data;
<br>model.rankK&nbsp;=&nbsp;rankKc;
<br>model.nsv&nbsp;=&nbsp;num_data;
<br>model.fun&nbsp;=&nbsp;<span class=quotes>'kernelproj'</span>;
<br>
<br><span class=jump>return</span>;
<br></code>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
成+人+亚洲+综合天堂| 国产一二精品视频| 亚洲私人黄色宅男| 中文字幕色av一区二区三区| 国产午夜一区二区三区| 久久精品一区二区| 国产精品久久毛片av大全日韩| 国产日本亚洲高清| 国产精品国产三级国产aⅴ中文| 中文字幕一区二区三区不卡在线| 亚洲欧洲在线观看av| 一区二区三区久久| 日本在线播放一区二区三区| 免费av成人在线| 国产一区二区三区四区五区入口 | 91在线国产观看| 在线观看亚洲精品| 日韩免费在线观看| 日本一区二区三级电影在线观看| 最新高清无码专区| 午夜国产精品影院在线观看| 精品一区二区三区在线观看国产| 大尺度一区二区| 色婷婷av久久久久久久| 日韩一级二级三级精品视频| 国产精品美女久久久久久| 亚洲精品欧美二区三区中文字幕| 日韩激情一二三区| 高清不卡一区二区| 91免费版在线| 欧美www视频| 亚洲一区二区三区免费视频| 激情伊人五月天久久综合| 94色蜜桃网一区二区三区| 欧美精品在线观看一区二区| 国产嫩草影院久久久久| 亚洲成人午夜电影| 国产精品2024| 91 com成人网| 亚洲日本va在线观看| 国产在线乱码一区二区三区| 色综合色狠狠天天综合色| 精品久久久久久无| 亚洲精品美腿丝袜| 国产成人免费在线视频| 91精品国产综合久久小美女| 一区二区三区久久久| 成人免费精品视频| 精品国产青草久久久久福利| 亚洲一区精品在线| 不卡欧美aaaaa| 久久久精品免费免费| 日产国产高清一区二区三区| 99久久久久久| 国产精品麻豆欧美日韩ww| 麻豆成人免费电影| 在线播放视频一区| 亚洲国产wwwccc36天堂| 91视频国产资源| 国产精品欧美一区二区三区| 国产成人鲁色资源国产91色综| 在线综合视频播放| 中文字幕欧美一区| 国产精品一二三区在线| 欧美成人video| 天天做天天摸天天爽国产一区| 91论坛在线播放| 国产精品嫩草影院av蜜臀| 国产精品911| 中文字幕欧美三区| 粉嫩高潮美女一区二区三区| 国产日韩欧美精品综合| 国产精品2024| 国产精品福利在线播放| 91一区二区三区在线播放| 亚洲欧洲综合另类在线| 日本道色综合久久| 一个色妞综合视频在线观看| 91麻豆国产在线观看| 亚洲天天做日日做天天谢日日欢| 91在线观看美女| 一区二区三区四区精品在线视频| 欧美性欧美巨大黑白大战| 亚洲午夜久久久久久久久久久| 欧美性猛交xxxxxx富婆| 日欧美一区二区| 久久午夜免费电影| jvid福利写真一区二区三区| 亚洲精品免费播放| 欧美日韩aaa| 国产原创一区二区三区| 中文字幕中文字幕一区二区| 在线观看中文字幕不卡| 久久精品国产色蜜蜜麻豆| 久久综合九色综合97婷婷女人 | 亚洲成人tv网| 精品欧美乱码久久久久久| 国产乱色国产精品免费视频| 国产精品九色蝌蚪自拍| 精品1区2区3区| 韩国精品免费视频| 亚洲精品欧美在线| xvideos.蜜桃一区二区| 91在线精品一区二区三区| 日韩中文字幕亚洲一区二区va在线| 精品久久久久av影院| 9久草视频在线视频精品| 日韩电影一区二区三区四区| 中文字幕乱码亚洲精品一区| 欧美四级电影在线观看| 福利一区福利二区| 免费三级欧美电影| 亚洲精品一二三| 国产日韩欧美精品综合| 欧美久久久久久久久| 91在线视频网址| 国产在线国偷精品免费看| 亚洲大尺度视频在线观看| 国产日韩精品一区二区三区| 在线不卡免费欧美| 91网站视频在线观看| 国产成人午夜电影网| 丝袜诱惑亚洲看片| 亚洲老妇xxxxxx| 国产精品亲子伦对白| 欧美精品一区二区三区四区| 欧美亚洲动漫制服丝袜| 波波电影院一区二区三区| 久久99国产精品久久| 丝袜a∨在线一区二区三区不卡| 中文字幕日韩一区二区| 中文字幕av免费专区久久| 欧美sm美女调教| 日韩欧美一级二级三级| 51精品秘密在线观看| 欧美特级限制片免费在线观看| 97久久人人超碰| 成人av中文字幕| 国产成a人亚洲| 国产一区二区0| 国产精品一区二区黑丝| 国产另类ts人妖一区二区| 精品午夜久久福利影院| 精品亚洲porn| 国产乱人伦偷精品视频免下载| 久久99精品久久久久婷婷| 久久99精品久久久久婷婷| 奇米四色…亚洲| 久久国产人妖系列| 狠狠色综合日日| 国产成人午夜片在线观看高清观看| 国产一区二区网址| 成人性视频免费网站| 丁香六月久久综合狠狠色| 成人夜色视频网站在线观看| 成人午夜碰碰视频| 91视频免费观看| 欧美午夜视频网站| 欧美一卡二卡在线观看| 欧美白人最猛性xxxxx69交| 久久久99久久精品欧美| 亚洲国产精品t66y| 亚洲精品欧美综合四区| 午夜在线电影亚洲一区| 人人精品人人爱| 高清视频一区二区| 在线视频中文字幕一区二区| 91精品国产综合久久精品麻豆| 欧美tickling网站挠脚心| 国产精品无遮挡| 午夜精品久久久久久久99水蜜桃| 美女一区二区三区在线观看| 国产乱码精品1区2区3区| 91免费精品国自产拍在线不卡| 欧美日韩情趣电影| 久久久久久一级片| 亚洲综合丁香婷婷六月香| 蜜桃视频免费观看一区| 成人av电影在线| 欧美一区二区在线不卡| 国产精品私人自拍| 午夜私人影院久久久久| 国产成人综合亚洲网站| 欧美色视频一区| 欧美激情中文字幕一区二区| 亚洲成人激情综合网| 国产91高潮流白浆在线麻豆 | 日本 国产 欧美色综合| 国产91富婆露脸刺激对白| 欧美日本国产一区| 欧美激情一区二区三区在线| 亚洲成a人v欧美综合天堂下载 | 欧美系列一区二区| 久久精品在这里| 午夜精品久久久久久久久| www.色精品| 国产日产精品一区| 免费观看成人鲁鲁鲁鲁鲁视频| 99re这里只有精品视频首页| 精品乱人伦小说|