?? svm2_mex.c~
字號:
/*---------------------------------------------------------------------------
svm2_mex.c: MEX-file for binary SVM with L2-soft margin solver.
Compile:
mex svm2_mex.c qpc2solver.c kernel_fun.c
Synopsis:
[Alpha,bias,exitflag,kercnt,access,trnerr,t,UB,LB,History] =
svm2_mex(data,labels,ker,arg,C,solver,tmax,tolabs,tolrel,cache,verb)
Input:
data [dim x num_data] Training vectors.
labels [1 x num_data] Labels.
ker [string] Kernel identifier.
arg [1 x nargs] Kernel argument.
C [1x1] Regularization constant.
solver [string] Solver; options are 'mdm'.
tmax [1x1] Maximal number of iterations.
tolabs [1x1] Absolute tolerance stopping condition.
tolrel [1x1] Relaitve tolerance stopping condition.
cache [1x1] Number of columns of kernel matrix to be cached.
It takes cache*num_data*size(double) bytes of memory.
verb [1x1] If 1 then some info about the training is printed.
Output:
Alpha [nclass x num_data] Weights.
bias [1x1] Bias.
exitflag [1x1] Indicates which stopping condition was used:
UB-LB <= tolabs -> exit_flag = 1 Abs. tolerance.
(UB-LB)/(LB+1) <= tolrel -> exit_flag = 2 Relative tolerance.
t >= tmax -> exit_flag = 0 Number of iterations.
kercnt [1x1] Number of kernel evaluations.
access [1x1] Access to the virtual kernel matrix.
trnerr [1x1] Training error.
t [1x1] Number of iterations.
UB [1x1] Upper bound on the optimal solution.
LB [1x1] Lower bound on the optimal solution.
History [2x(t+1)] UB and LB with respect to number of iterations.
Modifications:
27-nov-2004, VF
-------------------------------------------------------------------- */
#include "mex.h"
#include "matrix.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include "kernel_fun.h"
#define INDEX(ROW,COL,DIM) ((COL*DIM)+ROW)
#define MINUS_INF INT_MIN
#define PLUS_INF INT_MAX
#define KDELTA(A,B) (A==B)
#define KDELTA4(A1,A2,A3,A4) ((A1==A2)||(A1==A3)||(A1==A4)||(A2==A3)||(A2==A4)||(A3==A4))
/* Declaration of global variables */
unsigned long access_cnt; /* counter of access to H matrix */
long num_data; /* number of input training examples */
double reg_const; /* regularization constant */
double *vector_y; /* Pointer to labels */
long Cache_Size; /* number of cached columns (min 1) */
/* cache (FIFO) for columns of the kernel matrix */
long *cache_index; /* indices cached of kernel columns */
long first_kernel_inx; /* index of first inserted column */
double **kernel_columns; /* pointers at cached columns */
/* ------------------------------------------------------------
Returns pointer at a-th column of the matrix H = (y*y')*K.
This function maintains FIFO cache of kernel columns.
(note: the b-th column must be preserved in the cache during
updating but b is from (a(t-2), a(t-1)) where a=a(t) and
thus FIFO with more than three columns does not have to
take care od b.)
------------------------------------------------------------ */
void *get_col( long a, long b )
{
double *col_ptr;
double y;
long i;
long inx;
access_cnt = access_cnt + num_data;
inx = -1;
for( i=0; i < Cache_Size; i++ ) {
if( cache_index[i] == a ) { inx = i; break; }
}
if( inx != -1 ) {
col_ptr = kernel_columns[inx];
return( col_ptr );
}
col_ptr = kernel_columns[first_kernel_inx];
cache_index[first_kernel_inx] = a;
first_kernel_inx++;
if( first_kernel_inx >= Cache_Size ) first_kernel_inx = 0;
y = vector_y[a];
for( i=0; i < num_data; i++ ) {
if( vector_y[i] == y )
{
col_ptr[i] = 2*kernel(i,a);
}
else
{
col_ptr[i] = -2*kernel(i,a);
}
}
col_ptr[a] = col_ptr[a] + reg_const;
return( col_ptr );
}
/* -------------------------------------------------------------------
Main MEX function - interface to Matlab.
-------------------------------------------------------------------- */
void mexFunction( int nlhs, mxArray *plhs[],int nrhs, const mxArray*prhs[] )
{
char solver[20]; /* solver identifier */
int exitflag; /* output arg */
int buf_len; /* real length of the solver identifier */
long i; /* common use loop variables */
long tmax; /* input arg - max number of iteration */
long t; /* output arg - number of iterations */
long verb; /* input argument */
double nconst;
double b; /* bias */
double C; /* input arg - regularization const */
double tolrel; /* input arg */
double tolabs; /* input arg */
double aHa11;
double aHa22;
double trnerr; /* output arg */
double *vector_c; /* auxiliary */
double *alpha; /* solution vector */
double *History; /* output arg */
double *diagK; /* cache for diagonal of virtual K matrix */
double *tmp_ptr;
/*------------------------------------------------------------------- */
/* Take input arguments */
/*------------------------------------------------------------------- */
if( nrhs != 11) mexErrMsgTxt("Incorrect number of input arguments.");
dataA = mxGetPr(prhs[0]); /* pointers at data */
dataB = dataA;
dim = mxGetM(prhs[0]); /* data dimension */
num_data = mxGetN(prhs[0]); /* number of data */
vector_y = mxGetPr(prhs[1]); /* pointer at data labels */
/* take kernel identifier and its argument */
ker = kernel_id( prhs[2] );
if( ker == -1 ) mexErrMsgTxt("Improper kernel identifier.");
arg1 = mxGetPr(prhs[3]);
C = mxGetScalar(prhs[4]); /* regularization constant */
/* take string identifier QP solver to be used */
if( mxIsChar( prhs[5] ) != 1) mexErrMsgTxt("solver must be string.");
buf_len = (mxGetM(prhs[5]) * mxGetN(prhs[5])) + 1;
buf_len = (buf_len > 20) ? 20 : buf_len;
mxGetString( prhs[5], solver, buf_len );
/* maximal allowed number of iterations */
tmax = mxIsInf( mxGetScalar(prhs[6])) ? INT_MAX : (long)mxGetScalar(prhs[6]);
tolabs = mxGetScalar(prhs[7]); /* abs. precision defining stopping cond*/
tolrel = mxGetScalar(prhs[8]); /* rel. precision defining stopping cond*/
Cache_Size = (long)mxGetScalar(prhs[9]); /* cache size */
if( Cache_Size < 3 ) mexErrMsgTxt("Cache must be greater than 3.");
if( Cache_Size > num_data ) Cache_Size = num_data;
verb = (long)mxGetScalar(prhs[10]); /* verbosity on/off */
/*------------------------------------------------------------------- */
/* Inicialization (caches, etc.) */
/*------------------------------------------------------------------- */
/* constant added to diagonal of separable problem */
if( C!=0 ) reg_const = 1/C; else reg_const = 0;
ker_cnt = 0; /* counter of kernel evaluations */
access_cnt = num_data; /* conter for access to the kernel matrix */
/* allocattes and precomputes diagonal of virtual K matrix */
diagK = mxCalloc(num_data, sizeof(double));
if( diagK == NULL ) mexErrMsgTxt("Not enough memory.");
for(i = 0; i < num_data; i++ ) {
diagK[i] = 2*kernel(i,i) + reg_const;
}
/* allocates memory for kernel cache */
kernel_columns = mxCalloc(Cache_Size, sizeof(double*));
if( kernel_columns == NULL ) mexErrMsgTxt("Not enough memory.");
cache_index = mxCalloc(Cache_Size, sizeof(double));
if( cache_index == NULL ) mexErrMsgTxt("Not enough memory.");
for(i = 0; i < Cache_Size; i++ )
{
kernel_columns[i] = mxCalloc(num_data, sizeof(double));
if(kernel_columns[i] == NULL) mexErrMsgTxt("Not enough memory.");
cache_index[i] = -2;
}
first_kernel_inx = 0;
/* Solution vector */
plhs[0] = mxCreateDoubleMatrix(num_data,1,mxREAL);
alpha = mxGetPr(plhs[0]);
/* Vector c; for this problem set to zero */
vector_c = mxCalloc(num_data, sizeof(double));
if( vector_c == NULL ) mexErrMsgTxt("Not enough memory.");
for(i = 0; i < num_data; i++ ) vector_c[i] = 0;
/*------------------------------------------------------------------- */
/* Call QP solver */
/*------------------------------------------------------------------- */
if ( strcmp( solver, "mdm" )==0 ) {
exitflag = qpc2_mdm( &get_col, diagK, vector_c, vector_y, num_data,
tmax, tolabs, tolrel, alpha, &t, &aHa11, &aHa22, &History, verb );
} else if ( strcmp( solver, "imdm" )==0 ) {
exitflag = qpc2_imdm( &get_col, diagK, vector_c, vector_y, num_data,
tmax, tolabs, tolrel, alpha, &t, &aHa11, &aHa22, &History, verb );
} else {
mexErrMsgTxt("Unknown solver identifier.");
}
/*------------------------------------------------------------------- */
/* Generate outputs */
/*------------------------------------------------------------------- */
/* computes alpha and b to be paramaters of the separating
hyperplane in the cannonical form. */
nconst = History[INDEX(1,t,2)];
trnerr = 0; /* counter of training error */
for(i = 0; i < num_data; i++ )
{
if(vector_y[i] == 1)
{
alpha[i] = alpha[i]*2/nconst;
if( alpha[i]/(2*C) >= 1 ) trnerr++;
}
else
{
alpha[i] = -alpha[i]*2/nconst;
if( alpha[i]/(2*C) <= -1 ) trnerr++;
}
}
/* bias vector b [1 x 1] */
b = 0.5*(aHa22 - aHa11)/nconst;;
plhs[1] = mxCreateDoubleMatrix(1,1,mxREAL);
*(mxGetPr(plhs[1])) = (double)b;
/* exit_flag [1x1] */
plhs[2] = mxCreateDoubleMatrix(1,1,mxREAL);
*(mxGetPr(plhs[2])) = (double)exitflag;
/* kercnt [1x1] */
plhs[3] = mxCreateDoubleMatrix(1,1,mxREAL);
*(mxGetPr(plhs[3])) = (double)ker_cnt;
/* access [1x1] */
plhs[4] = mxCreateDoubleMatrix(1,1,mxREAL);
*(mxGetPr(plhs[4])) = (double)access_cnt;
/* trnerr [1x1] */
plhs[5] = mxCreateDoubleMatrix(1,1,mxREAL);
*(mxGetPr(plhs[5])) = trnerr;
/* t [1x1] */
plhs[6] = mxCreateDoubleMatrix(1,1,mxREAL);
*(mxGetPr(plhs[6])) = (double)t;
/* UB [1x1] */
plhs[7] = mxCreateDoubleMatrix(1,1,mxREAL);
*(mxGetPr(plhs[7])) = History[INDEX(1,t,2)];
/* LB [1x1] */
plhs[8] = mxCreateDoubleMatrix(1,1,mxREAL);
*(mxGetPr(plhs[8])) = History[INDEX(0,t,2)];
/* History [2 x (t+1)] */
plhs[9] = mxCreateDoubleMatrix(2,t+1,mxREAL);
tmp_ptr = mxGetPr( plhs[9] );
for( i = 0; i <= t; i++ ) {
tmp_ptr[INDEX(0,i,2)] = History[INDEX(0,i,2)];
tmp_ptr[INDEX(1,i,2)] = History[INDEX(1,i,2)];
}
/*------------------------------------------------------------------- */
/* Free used memory */
/*------------------------------------------------------------------- */
mxFree( vector_c );
mxFree( History );
mxFree( diagK );
for(i = 0; i < Cache_Size; i++ ) mxFree(kernel_columns[i]);
mxFree( kernel_columns );
mxFree( cache_index );
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -