?? svm2.m
字號:
function model = svm2(data,options)% SVM2 Learning of binary SVM classifier with L2-soft margin.%% Synopsis:% model = svm2(data)% model = svm2(data,options)%% Description:% This function learns binary Support Vector Machines% classifier with L2-soft margin. The corresponding quadratic % programming task is solved by one of the following % algorithms:% mdm ... Mitchell-Demyanov-Malozemov (MDM) algorithm.% imdm ... Improved MDM algorithm.%% Input:% data [struct] Training data:% .X [dim x num_data] Training vectors.% .y [1 x num_data] Labels must equal 1 and/or 2.%% options [struct] Control parameters:% .ker [string] Kernel identifier. See 'help kernel'.% .arg [1 x nargs] Kernel argument(s).% .C [1x1] Regularization constant.% .qp [string] QP solver to use: 'mdm', 'imdm' (default).% .tmax [1x1] Maximal number of iterations.% .tolabs [1x1] Absolute tolerance stopping condition (default 0.0).% .tolrel [1x1] Relative tolerance stopping condition (default 1e-3).% .cache [1x1] Number of columns of kernel matrix to be cached.%% Output:% model [struct] Binary SVM classifier:% .Alpha [nsv x 1] Weights of support vectors.% .b [1x1] Bias of decision function.% .sv.X [dim x nsv] Support vectors.% .sv.inx [1 x nsv] Indices of SVs (model.sv.X = data.X(:,inx)).% .nsv [int] Number of Support Vectors.% .kercnt [1x1] Number of kernel evaluations.% .trnerr [1x1] Classification error on training data.% .options [struct] Copy of used options.% .cputime [1x1] Used CPU time in seconds (meassured by tic-toc).% .qp_stat [struct] Statistics about QP optimization:% .access [1x1] Number of requested columns of matrix H.% .t [1x1] Number of iterations.% .UB [1x1] Upper bound on optimal value of criterion. % .LB [1x1] Lower bound on optimal value of criterion. % .LB_History [1x(t+1)] LB with respect to iteration.% .UB_History [1x(t+1)] UB with respect to iteration.% .NA [1x1] Number of non-zero entries in solution.%% Example:% data = load('riply_trn');% options = struct('ker','rbf','arg',1,'C',1);% model = svm2(data,options )% figure; ppatterns(data); psvm( model );%% See also% SVMCLASS, SVMLIGHT, SMO.%% About: Statistical Pattern Recognition Toolbox% (C) 1999-2004, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 29-nov-2004, VF% restart clocktic;if nargin < 2, options = []; else options = c2s(options); endif ~isfield(options,'qp'), options.qp = 'imdm'; endif ~isfield(options,'tolabs'), options.tolabs = 0; endif ~isfield(options,'tolrel'), options.tolrel = 1e-3; endif ~isfield(options,'tmax'), options.tmax = inf; endif ~isfield(options,'C'), options.C = inf; endif ~isfield(options,'ker'), options.ker = 'linear'; endif ~isfield(options,'arg'), options.arg = 1; endif ~isfield(options,'cache'), options.cache = 1000; endif ~isfield(options,'qp_verb'), options.qp_verb = 0; end% call MEX implementation of QPC2 solver[Alpha,b,exitflag,kercnt,access,errcnt,t,UB,LB,History] = svm2_mex(... data.X,... data.y,... options.ker,... options.arg,... options.C,... options.qp,... options.tmax,... options.tolabs, ... options.tolrel,... options.cache, ... options.qp_verb );% remove non-support vectorsinx = find(Alpha ~=0 );% setup output modelmodel.Alpha = Alpha(inx);model.b = b;model.sv.X = data.X(:,inx);model.sv.inx = inx;model.sv.y = data.y(inx);model.nsv = length(inx);model.options = options;model.kercnt = kercnt;model.trnerr = errcnt/size(data.X,2);model.errcnt = errcnt;model.qp_stat.access = access;model.qp_stat.t = t;model.qp_stat.UB = UB;model.qp_stat.LB = LB;model.qp_stat.LB_History = History(1,:);model.qp_stat.UB_History = History(2,:);model.qp_stat.NA = length(inx);model.cputime = toc;model.fun = 'svmclass';return;%EOF
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -