?? oaosvm.m
字號:
function model = oaosvm(data,options)% OAOSVM Multi-class SVM using One-Against-One decomposition.% % Synopsis:% model = oaosvm( data )% model = oaosvm( data, options )%% Description:% model = oaosvm( data ) uses one-agains-one deconposition% to train the multi-class Support Vector Machines (SVM)% classifier. The classification into nclass classes % is decomposed into nrule = (nclass-1)*nclass/2 binary % problems.%% model = oaosvm( data, options) allows to specify the% binary SVM solver and its paramaters.%% Input:% data [struct] Training data:% .X [dim x num_data] Training vectors.% .y [1 x num_data] Labels of training data (1,2,...,nclass). %% options [struct] Control parameters:% .solver [string] Function which implements the binary SVM % solver; (default 'smo').% .verb [1x1] If 1 then a progress info is displayed (default 0).% The other fileds of options specifies the options of the binary% solver (e.g., ker, arg, C). See help of the selected solver.%% Output:% model [struct] Multi-class SVM majority voting classifier:% .Alpha [nsv x nrule] Weights (Lagrangeans).% .bin_y [2 x nrule] Translation between binary responses of% the discriminant functions and class labels.% .b [nrule x 1] Biases of discriminant functions.% .sv.X [dim x nsv] Support vectors.% .nsv [1x1] Number of support vectors.% .trnerr [1x1] Training error.% .kercnt [1x1] Number of kernel evaluations.% .options [struct[ Copy of input argument options.%% Example:% data = load('pentagon');% options = struct('ker','rbf','arg',1,'C',1000,'verb',1);% model = oaosvm( data, options );% figure; % ppatterns(data); ppatterns(model.sv.X,'ok',13);% pboundary( model );% % See also % MVSVMCLASS, OAASVM.%% About: Statistical Pattern Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 26-may-2004, VF% 4-feb-2004, VF% 9-Feb-2003, VF% Process inputs%-----------------------------if nargin < 2, options = []; else options=c2s(options); endif ~isfield(options,'verb'), options.verb = 0; endif ~isfield(options,'solver'), options.solver = 'smo'; endif ~isfield(options,'ker'), options.ker = 'linear'; endif ~isfield(options,'arg'), options.arg = 1; endif ~isfield(options,'C'), options.C = inf; end[dim,num_data] = size(data.X);nclass = max(data.y);nrule = (nclass-1)*nclass/2;% display info%---------------------if options.verb == 1, fprintf('Binary rules: %d\n', nrule); fprintf('Training data: %d\n', num_data); fprintf('Dimension: %d \n', dim); if isfield( options, 'ker'), fprintf('Kernel: %s\n', options.ker); end if isfield( options, 'arg'), fprintf('arg: %f\n', options.arg(1)); end if isfield( options, 'C'), fprintf('C: %f\n', options.C); endend%----------------------------------------Alpha = zeros(num_data,nrule);b = zeros(nrule,1);bin_y = zeros(2,nrule);kercnt = 0;% One-Against-One decomposition%-----------------------------------rule = 0;for class1 = 1:nclass-1, for class2 = class1+1:nclass, rule = rule + 1; if options.verb == 1, fprintf('building rule %d-%d (%d of %d)', ... class1, class2, rule, nrule ); end % set binary subtask %--------------------------------------------- bin_y(1,rule) = class1; bin_y(2,rule) = class2; data_inx = find(data.y==class1 | data.y==class2); bin_data.X = data.X(:, data_inx); bin_data.y = data.y(data_inx); bin_data.y(find(bin_data.y == class1)) = 1; bin_data.y(find(bin_data.y == class2)) = 2; % solve binary subtask %--------------------------------------------- bin_model = feval( options.solver, bin_data, options ); Alpha(data_inx(bin_model.sv.inx),rule) = bin_model.Alpha(:); b(rule) = bin_model.b; kercnt = kercnt + bin_model.kercnt; % progress info %----------------------------- if options.verb ==1, if isfield(bin_model, 'trnerr'), fprintf(': trnerr = %.4f', bin_model.trnerr); end if isfield(bin_model, 'margin'), fprintf(', margin = %f', bin_model.margin ); end fprintf('\n'); end endend% set output model%---------------------------------% indices of all support vectorsinx = find(sum(abs(Alpha),2)~= 0);model.Alpha = Alpha(inx,:);model.b = b;model.bin_y = bin_y;model.sv.X = data.X(:,inx);model.sv.y = data.y(inx);model.sv.inx = inx;model.nsv = length(inx);model.kercnt = kercnt;model.options = options;model.fun = 'mvsvmclass';model.trnerr = cerror( mvsvmclass(data.X, model), data.y );% display info%--------------------if options.verb == 1, fprintf('Total training error = %.4f\n', model.trnerr);endreturn;% EOF
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -