?? greedyappx.m~
字號:
function [sel_inx,Alpha,Z,kercnt,MsErr,MaxErr]=... greedyappx(X,ker,arg,m,p,mserr,maxerr,verb) % GREEDYAPPX Kernel greedy data approximation.%% Synopsis:% [inx,Alpha,kercnt,mserr,maxerr]=...% greedyappx(X,ker,arg,m,m2,mserr,maxerr,verb)%% Description:% This function aims to select a subset S of input data X such% that the feature space representation of X can be well % approximated by feature space representation of S.% The feature represenation of data is by the use of% specified kernel function.%% The greedy algortihm is used to seletect the subset S. % The algorithm iterates until on of the following stopping % conditions is achieved:% - number of vectors of S achieves m % - maximal reconstruction error is less than maxerr % - mean squared sum of reconstruction errors less than mserr. % % Input:% X [dim x num_data] Input data.% ker [string] Kernel identifier. See 'help kernel' for more info.% arg [...] Argument of selected kernel.% m [1x1] Maximal number of vector used for approximation.% p [1x1] Depth of search for the best basis vector.% mserr [1x1] Desired mean sum of squared reconstruction errors.% maxerr [1x1] Desired maximal reconstruction error.% verb [1x1] If 1 then infor about process is displayed.%% Output:% inx [1 x n] Indices of selected vector, i.e., S = X(:,inx).% Alpha [m x m] Koefficient of the kernel projection of data on the% found base vectors, i.e., z = Alpha*kernel(S,x,ker,arg).% Z [m x num_data] Training data projected on the found base vectors.% kercnt [1x1] Number of used kernel evaluations.% MsErr [1 x m] Sum of squared reconstruction errors for corresponding% number of base vectors.% MaxErr [1 x m] Maximal squared reconstruction error for crresponding %% See also % GREEDYKPCA.%% About: Statistical Pattern Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 10-dec-2004, VF, tmp(find(Errors<=0)) = -inf; added to evoid num errors.% 5-may-2004, VF% 13-mar-2004, VF% 10-mar-2004, VF% 9-mar-2004, addopted from greedyappxif nargin < 5, mserr=1e-6; endif nargin < 6, maxerr=1e-6; endif nargin < 7, verb=0; end[dim,num_data]=size(X);if verb, fprintf('Greedy data approximation.\n'); fprintf('Setting: ker=%s, arg=%f, m=%d, eps=%f\n', ker,arg,m,maxerr); endkercnt=0;Errors = diagker(X,ker,arg)'; kercnt = kercnt+num_data;Z = zeros(m,num_data);MsErr = [];MaxErr = [];Alpha=zeros(m,m);SV = zeros(dim,m);sel_inx=[];work_inx = [1:num_data];for i=1:m, % call greedyappx2 if i == 1, [tmp_sel_inx,tmp_Alpha,tmp_Z,tmp_kercnt,tmp_MsErr,tmp_MaxErr]=... ordinary_greedyappx(X,ker,arg,p,0,1e-12,verb);% [tmp_sel_inx,tmp_Alpha,tmp_Z,tmp_kercnt,tmp_MsErr,tmp_MaxErr]=...% ordinary_greedyappx(X,ker,arg,p,mserr,maxerr,verb); kercnt = kercnt+tmp_kercnt; else init_model.Alpha = Alpha(1:i-1,1:i-1); init_model.Z = Z(1:i-1,:); init_model.Errors = Errors; [tmp_sel_inx,tmp_Alpha,tmp_Z,tmp_kercnt,tmp_MsErr,tmp_MaxErr]=... ordinary_greedyappx(X,ker,arg,p,0,1e-12,verb,init_model);% [tmp_sel_inx,tmp_Alpha,tmp_Z,tmp_kercnt,tmp_MsErr,tmp_MaxErr]=...% ordinary_greedyappx(X,ker,arg,p,mserr,maxerr,verb,init_model); kercnt = kercnt+tmp_kercnt; end tmp_Z = tmp_Z(i:size(tmp_Z,1),:); A = tmp_Z*tmp_Z'; tmp1 = sum(tmp_Z.^2,1); tmp1(find(tmp1==0))=inf; tmp = sum((A*tmp_Z).*tmp_Z,1)./tmp1;% tmp(sel_inx) = -inf; tmp(find(Errors<=0)) = -inf; [dummy,new_inx]=max(tmp); % [V,D] = eig(A);% D=diag(D);% [dummy,inx]=max(D);% z = V(:,inx);% dummy = z'*A*z/(z'*z) % orthonormalization sel_inx = [sel_inx new_inx]; tmp = kernel( X(:,new_inx), X(:,work_inx), ker, arg ); kercnt=kercnt+num_data-i; if i > 1, Z(i,work_inx) = ... (tmp - Z(1:i-1,new_inx)'*Z(1:i-1,work_inx))/sqrt(Errors(new_inx)); Alpha(i,:) = - Z(1:i-1,new_inx)'*Alpha(1:i-1,:); Alpha(i,i) = 1; Alpha(i,:) = Alpha(i,:)/sqrt(Errors(new_inx)); else Z(1,:) = tmp/sqrt(Errors(new_inx)); Alpha(1,1) = 1/sqrt(Errors(new_inx)); end% SV(:,i) = x; % Error(i) = k(i,i)-k'(i,i) Errors(work_inx) = Errors(work_inx) - Z(i,work_inx).^2; Errors(find(Errors<0)) = 0;% Errors(sel_inx)=zeros(1,length(sel_inx)); work_inx(find(work_inx==new_inx)) = []; % store errors MsErr = [MsErr, sum(Errors)/num_data]; MaxErr = [MaxErr, max(Errors)]; if verb, fprintf('%d: maxerr=%f, mserr=%f, inx=%d\n', ... i,MaxErr(end), MsErr(end), new_inx); end % evaluate stopping conditions: if maxerr >= MaxErr(end) | mserr >= MsErr(end), break; endend%if MsErr(end) < 0, % i = i-1% MaxErr = MaxErr(1:end-1);% MsErr = MsErr(1:end-1);% sel_inx = sel_inx(1:end-1);%end % Patch to avaid nummerical errors% cut off non-used memory if number of used base vector is less than mAlpha=Alpha(1:i,1:i);Z = Z(1:i,:);return;%=================================================function [sel_inx,Alpha,Z,kercnt,MsErr,MaxErr]=... ordinary_greedyappx(X,ker,arg,m,mserr,maxerr,verb,init_model) [dim,num_data]=size(X);kercnt=0;sel_inx=[]; % indices of seleted base vectorswork_inx = [1:num_data]; % indices of the rest MsErr = [];MaxErr = [];if nargin < 8, Errors = diagker(X,ker,arg)'; Z = zeros(m,num_data); Alpha=zeros(m,m); curr_m = 0;else Errors = init_model.Errors; curr_m = size(init_model.Z,1); m = m + curr_m; Z = zeros(m,num_data); Alpha=zeros(m,m); Z(1:curr_m,:) = init_model.Z; Alpha(1:curr_m,1:curr_m) = init_model.Alpha;endif verb, fprintf('('); endfor i=curr_m+1:m, % find vector with highest reconstruction error [curr_maxerr,new_inx] = max( Errors ); sel_inx = [sel_inx,new_inx]; % orthonormalization tmp = kernel( X(:,new_inx), X(:,work_inx), ker, arg ); kercnt = kercnt + num_data - i; if i > 1, Z(i,work_inx) = ... (tmp - Z(1:i-1,new_inx)'*Z(1:i-1,work_inx))/sqrt(Errors(new_inx)); Alpha(i,:) = - Z(1:i-1,new_inx)'*Alpha(1:i-1,:); Alpha(i,i) = 1; Alpha(i,:) = Alpha(i,:)/sqrt(Errors(new_inx)); else Z(1,:) = tmp/sqrt(Errors(new_inx)); Alpha(1,1) = 1/sqrt(Errors(new_inx)); end % Error(i) = k(i,i)-k'(i,i) Errors(work_inx) = Errors(work_inx) - Z(i,work_inx).^2; % Errors(sel_inx)=zeros(1,length(sel_inx)); work_inx(find(work_inx==new_inx)) = []; % store errors MsErr = [MsErr, sum(Errors)/num_data]; MaxErr = [MaxErr, max(Errors)]; if verb, fprintf('.', i, MsErr(end) ); end % evaluate stopping conditions: if maxerr >= MaxErr(end) | mserr >= MsErr(end), break; endendif verb, fprintf(')\n'); end% cut off non-used memory if number of used base vector is less than mAlpha=Alpha(1:i,1:i);Z = Z(1:i,:);return;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -