?? contents.m~
字號:
% Statistical Pattern Recognition Toolbox (STPRtool).% Version 2.03 14-Dec-2004%% Bayesian classification.% bayescls - Bayesian classifier with reject option.% bayesdf - Computes decision boundary of Bayesian classifier.% bayeserr - Computes Bayesian risk for 1D case with Gaussians.%% Linear Discriminant function.% linclass - Linear classifier.% ekozinec - Kozinec's algorithm for eps-optimal hyperplane.% mperceptron - Perceptron to train multi-class linear classifier.% perceptron - Perceptron to train binary linear classifier.% fld - Fisher Linear Discriminant. % fldqp - Fisher Linear Discriminant using QP.%% Generalized Anderson's task.% andrerr - Classification error of the Generalized Anderson's task.% androrig - Original method to solve the Anderson's task.% eanders - Epsilon-solution of the Generalized Anderson's task.% ganders - Solves the Generalized Anderson's task.% ggradander - Generalized gradients approach to Gen. Anderson's task.% % Linear feature extraction.% linproj - Linear data projection.% lda - Linear Discriminant Analysis.% pca - Principal Component Analysis.% pcarec - Computes reconstructed vector after PCA projection.%% Miscellaneous metods.% adaboost - AdaBoost algorithm.% adaclass - AdaBoost classifier.% cerror - Computes classification error.% crossval - Partions data for cross-validation.% knnclass - k-Nearest Neighbours classifier.% knnrule - Creates K-nearest neighbours classifier.% roc - Computes Receiver Operator Characteristic.% weaklearner - Produce classifier thresholding single feature.%% Kernel machines.% diagker - Returns diagonal of kernel matrix.% dualcov - Dual representation of covariance matrix.% dualmean - Computes dual representation of mean vector.% kdist - Computes distance between points in kernel space. % kernel - Evaluates kernel function.% kernelproj - Kernel projection. % kfd - Kernel Fisher Discriminant.% knorm - Computes L2-norm in kernel space.% kperceptr - Kernel Perceptron.% lin2svm - Merges linear rule and kernel projection. % minball - Minimal enclosing ball in kernel feature space.% rsrbf - Reduced Set Method for RBF kernel expansion. % % Kernel feature extraction.% gda - Generalized Discriminant Analysis.% greedykpca - Greedy kernel PCA.% kpca - Kernel Principal Component Analysis.% kpcarec - Reconstructs image after kernel PCA.% % Pre-image problem for RBF kernel.% rbfpreimg - Schoelkopf's fixed-point algorithm.% rbfpreimg2 - Gradient optimization.% rbfpreimg3 - Kwok-Tsang's algorithm.%% Support Vector Machines.% bsvm2 - Solver for multi-class BSVM with L2-soft margin.% evalsvm - Training and evaluates SVM classifier.% mvsvmclass - Majority voting multi-class SVM classifier.% oaasvm - Multi-class SVM using One-Agains-All decomposition.% oaosvm - Multi-class SVM using One-Against-One decomposition.% smo - Sequential Minimal Optimization for SVM (L1).% svm1d - Linear SVM for 1-dimensional input data.% svm2 - Solver for binary SVM with L2 soft margin.% svmclass - Support Vector Machines Classifier. % svmlight - Interface to SVM^{light} software. % svmquadprog - SVM trained by Matlab Optimization Toolbox.%% Probability distribution functions and estimation.% erfc2 - Normal cumulative distribution function. % gmmsamp - Generates sample from Gaussian mixture model (GMM).% gsamp - Generates sample from Gaussian distribution.% kmeans - K-means clustering algorithm. % mahalan - Computes Mahalanobis distance.% pdfgauss - Computes probability for Gaussian distribution.% pdfgmm - Computes probability for Gaussian mixture model. % sigmoid - Evaluates sigmoid function.%% emgmm - Expectation-Maximization Algorithm for GMM. % mlcgmm - ML estimation of GMM from complete data.% mlsigmoid - Fitting a sigmoid function using ML estimation.% mmgauss - Minimax estimation of Gaussian distribution.% rsde - Reduced Set Density Estimator.%% Quadratic discriminant function.% lin2quad - Merges linear rule and quadratic mapping.% qmap - Quadratic data mapping.% quadclass - Quadratic classifier. %% Visualization.% pandr - Visualizes solution of the Generalized Anderson's task. % pboundary - Plots decision boundary of given classifier in 2D.% pgauss - Visualizes set of bivariate Gaussians.% pgmm - Visualizes Gaussian mixture model.% pkernelproj - Plots isolines of kernel projection.% plane3 - Plots plane in 3d.% pline - Plots line in 2D.% ppatterns - Plots pattern as points in feature space.% psvm - Plots decision boundary of binary SVM classifier. % showim - Displays given image(s). % % Data sets.% andersons_task - (dir) Input for demo on Generalized Anderson's task.% binary_separable - (dir) Input for demo on Linear classification.% gmm_sample - (dir) Input for demo on EM algorithm for GMM.% iris_data - (dir) Fisher's Iris data set.% mm_sample - (dir) Input for demo on Minimax Algorithm.% multi_separable - (dir) Linearly separable multi-class data.% ocr_numerals - (dir) Examples of hand-written numerals.% riply_data - (dir) Riply's data set.% svm_sample - (dir) Input for demo on SVM.%% c2s - Converts cell to structure array.% createdata - Interactive data generator. % gencircledata - Generates data on circle corrupted by Gaussian noise. % genlsdata - Generates linearly separable binary data.% mergesets - Merges data sets to one labeled data file.% savestruct - Saves fields of given structure to file.% usps2mat - Converts USPS database to Matlab data file (MAT). %% Demos.% image_denoising - (dir) Image denoising using kernel PCA.% ocr - (dir) Optical Character Recognition. %% demo_anderson - Generalized Anderson's task.% demo_emgmm - Expectation-Maximization algorithm for GMM.% demo_kpcadenois - Idea of image denoising based on Kernel PCA.% demo_linclass - Algorithms learning linear classifiers.% demo_mmgauss - Minimax estimation of Gaussian distribution.% demo_ocr - Run OCR demo.% demo_pcacomp - Image compression using PCA.% demo_svm - Support Vector Machines.% demo_svmpout - Fitting a posteriori probability to SVM output.%%% compilemex - Compiles all MEX files of the STPRtool.% stprpath - Sets path to the STPRtool.% % About: Statistical Pattern Recognition Toolbox% (C) 1999-2004, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 14-dec-2004, VF% 08-oct-2004, VF% 27-aug-2004, VF% 15-jun-2004, VF% 11-jun-2004, VF% 20-sep-2003, VF
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -