亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? jama_eig.h

?? 在MATLAB環境下的level set方法的實現
?? H
?? 第 1 頁 / 共 2 頁
字號:
            p = (H[n-1][n-1] - H[n][n]) / 2.0;
            q = p * p + w;
            z = sqrt(abs(q));
            H[n][n] = H[n][n] + exshift;
            H[n-1][n-1] = H[n-1][n-1] + exshift;
            x = H[n][n];
   
            // Real pair
   
            if (q >= 0) {
               if (p >= 0) {
                  z = p + z;
               } else {
                  z = p - z;
               }
               d[n-1] = x + z;
               d[n] = d[n-1];
               if (z != 0.0) {
                  d[n] = x - w / z;
               }
               e[n-1] = 0.0;
               e[n] = 0.0;
               x = H[n][n-1];
               s = abs(x) + abs(z);
               p = x / s;
               q = z / s;
               r = sqrt(p * p+q * q);
               p = p / r;
               q = q / r;
   
               // Row modification
   
               for (int j = n-1; j < nn; j++) {
                  z = H[n-1][j];
                  H[n-1][j] = q * z + p * H[n][j];
                  H[n][j] = q * H[n][j] - p * z;
               }
   
               // Column modification
   
               for (int i = 0; i <= n; i++) {
                  z = H[i][n-1];
                  H[i][n-1] = q * z + p * H[i][n];
                  H[i][n] = q * H[i][n] - p * z;
               }
   
               // Accumulate transformations
   
               for (int i = low; i <= high; i++) {
                  z = V[i][n-1];
                  V[i][n-1] = q * z + p * V[i][n];
                  V[i][n] = q * V[i][n] - p * z;
               }
   
            // Complex pair
   
            } else {
               d[n-1] = x + p;
               d[n] = x + p;
               e[n-1] = z;
               e[n] = -z;
            }
            n = n - 2;
            iter = 0;
   
         // No convergence yet
   
         } else {
   
            // Form shift
   
            x = H[n][n];
            y = 0.0;
            w = 0.0;
            if (l < n) {
               y = H[n-1][n-1];
               w = H[n][n-1] * H[n-1][n];
            }
   
            // Wilkinson's original ad hoc shift
   
            if (iter == 10) {
               exshift += x;
               for (int i = low; i <= n; i++) {
                  H[i][i] -= x;
               }
               s = abs(H[n][n-1]) + abs(H[n-1][n-2]);
               x = y = 0.75 * s;
               w = -0.4375 * s * s;
            }

            // MATLAB's new ad hoc shift

            if (iter == 30) {
                s = (y - x) / 2.0;
                s = s * s + w;
                if (s > 0) {
                    s = sqrt(s);
                    if (y < x) {
                       s = -s;
                    }
                    s = x - w / ((y - x) / 2.0 + s);
                    for (int i = low; i <= n; i++) {
                       H[i][i] -= s;
                    }
                    exshift += s;
                    x = y = w = 0.964;
                }
            }
   
            iter = iter + 1;   // (Could check iteration count here.)
   
            // Look for two consecutive small sub-diagonal elements
   
            int m = n-2;
            while (m >= l) {
               z = H[m][m];
               r = x - z;
               s = y - z;
               p = (r * s - w) / H[m+1][m] + H[m][m+1];
               q = H[m+1][m+1] - z - r - s;
               r = H[m+2][m+1];
               s = abs(p) + abs(q) + abs(r);
               p = p / s;
               q = q / s;
               r = r / s;
               if (m == l) {
                  break;
               }
               if (abs(H[m][m-1]) * (abs(q) + abs(r)) <
                  eps * (abs(p) * (abs(H[m-1][m-1]) + abs(z) +
                  abs(H[m+1][m+1])))) {
                     break;
               }
               m--;
            }
   
            for (int i = m+2; i <= n; i++) {
               H[i][i-2] = 0.0;
               if (i > m+2) {
                  H[i][i-3] = 0.0;
               }
            }
   
            // Double QR step involving rows l:n and columns m:n
   
            for (int k = m; k <= n-1; k++) {
               int notlast = (k != n-1);
               if (k != m) {
                  p = H[k][k-1];
                  q = H[k+1][k-1];
                  r = (notlast ? H[k+2][k-1] : 0.0);
                  x = abs(p) + abs(q) + abs(r);
                  if (x != 0.0) {
                     p = p / x;
                     q = q / x;
                     r = r / x;
                  }
               }
               if (x == 0.0) {
                  break;
               }
               s = sqrt(p * p + q * q + r * r);
               if (p < 0) {
                  s = -s;
               }
               if (s != 0) {
                  if (k != m) {
                     H[k][k-1] = -s * x;
                  } else if (l != m) {
                     H[k][k-1] = -H[k][k-1];
                  }
                  p = p + s;
                  x = p / s;
                  y = q / s;
                  z = r / s;
                  q = q / p;
                  r = r / p;
   
                  // Row modification
   
                  for (int j = k; j < nn; j++) {
                     p = H[k][j] + q * H[k+1][j];
                     if (notlast) {
                        p = p + r * H[k+2][j];
                        H[k+2][j] = H[k+2][j] - p * z;
                     }
                     H[k][j] = H[k][j] - p * x;
                     H[k+1][j] = H[k+1][j] - p * y;
                  }
   
                  // Column modification
   
                  for (int i = 0; i <= TNT::min(n,k+3); i++) {
                     p = x * H[i][k] + y * H[i][k+1];
                     if (notlast) {
                        p = p + z * H[i][k+2];
                        H[i][k+2] = H[i][k+2] - p * r;
                     }
                     H[i][k] = H[i][k] - p;
                     H[i][k+1] = H[i][k+1] - p * q;
                  }
   
                  // Accumulate transformations
   
                  for (int i = low; i <= high; i++) {
                     p = x * V[i][k] + y * V[i][k+1];
                     if (notlast) {
                        p = p + z * V[i][k+2];
                        V[i][k+2] = V[i][k+2] - p * r;
                     }
                     V[i][k] = V[i][k] - p;
                     V[i][k+1] = V[i][k+1] - p * q;
                  }
               }  // (s != 0)
            }  // k loop
         }  // check convergence
      }  // while (n >= low)
      
      // Backsubstitute to find vectors of upper triangular form

      if (norm == 0.0) {
         return;
      }
   
      for (n = nn-1; n >= 0; n--) {
         p = d[n];
         q = e[n];
   
         // Real vector
   
         if (q == 0) {
            int l = n;
            H[n][n] = 1.0;
            for (int i = n-1; i >= 0; i--) {
               w = H[i][i] - p;
               r = 0.0;
               for (int j = l; j <= n; j++) {
                  r = r + H[i][j] * H[j][n];
               }
               if (e[i] < 0.0) {
                  z = w;
                  s = r;
               } else {
                  l = i;
                  if (e[i] == 0.0) {
                     if (w != 0.0) {
                        H[i][n] = -r / w;
                     } else {
                        H[i][n] = -r / (eps * norm);
                     }
   
                  // Solve real equations
   
                  } else {
                     x = H[i][i+1];
                     y = H[i+1][i];
                     q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
                     t = (x * s - z * r) / q;
                     H[i][n] = t;
                     if (abs(x) > abs(z)) {
                        H[i+1][n] = (-r - w * t) / x;
                     } else {
                        H[i+1][n] = (-s - y * t) / z;
                     }
                  }
   
                  // Overflow control
   
                  t = abs(H[i][n]);
                  if ((eps * t) * t > 1) {
                     for (int j = i; j <= n; j++) {
                        H[j][n] = H[j][n] / t;
                     }
                  }
               }
            }
   
         // Complex vector
   
         } else if (q < 0) {
            int l = n-1;

            // Last vector component imaginary so matrix is triangular
   
            if (abs(H[n][n-1]) > abs(H[n-1][n])) {
               H[n-1][n-1] = q / H[n][n-1];
               H[n-1][n] = -(H[n][n] - p) / H[n][n-1];
            } else {
               cdiv(0.0,-H[n-1][n],H[n-1][n-1]-p,q);
               H[n-1][n-1] = cdivr;
               H[n-1][n] = cdivi;
            }
            H[n][n-1] = 0.0;
            H[n][n] = 1.0;
            for (int i = n-2; i >= 0; i--) {
               Real ra,sa,vr,vi;
               ra = 0.0;
               sa = 0.0;
               for (int j = l; j <= n; j++) {
                  ra = ra + H[i][j] * H[j][n-1];
                  sa = sa + H[i][j] * H[j][n];
               }
               w = H[i][i] - p;
   
               if (e[i] < 0.0) {
                  z = w;
                  r = ra;
                  s = sa;
               } else {
                  l = i;
                  if (e[i] == 0) {
                     cdiv(-ra,-sa,w,q);
                     H[i][n-1] = cdivr;
                     H[i][n] = cdivi;
                  } else {
   
                     // Solve complex equations
   
                     x = H[i][i+1];
                     y = H[i+1][i];
                     vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
                     vi = (d[i] - p) * 2.0 * q;
                     if ((vr == 0.0) && (vi == 0.0)) {
                        vr = eps * norm * (abs(w) + abs(q) +
                        abs(x) + abs(y) + abs(z));
                     }
                     cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
                     H[i][n-1] = cdivr;
                     H[i][n] = cdivi;
					 if (abs(x) > (abs(z) + abs(q))) {
                        H[i+1][n-1] = (-ra - w * H[i][n-1] + q * H[i][n]) / x;
                        H[i+1][n] = (-sa - w * H[i][n] - q * H[i][n-1]) / x;
                     } else {
                        cdiv(-r-y*H[i][n-1],-s-y*H[i][n],z,q);
                        H[i+1][n-1] = cdivr;
                        H[i+1][n] = cdivi;
                     }
                  }
   
                  // Overflow control

                  t = TNT::max(abs(H[i][n-1]),abs(H[i][n]));
                  if ((eps * t) * t > 1) {
                     for (int j = i; j <= n; j++) {
                        H[j][n-1] = H[j][n-1] / t;
                        H[j][n] = H[j][n] / t;
                     }
                  }
               }
            }
         }
      }
   
      // Vectors of isolated roots
   
      for (int i = 0; i < nn; i++) {
         if (i < low || i > high) {
            for (int j = i; j < nn; j++) {
               V[i][j] = H[i][j];
            }
         }
      }
   
      // Back transformation to get eigenvectors of original matrix
   
      for (int j = nn-1; j >= low; j--) {
         for (int i = low; i <= high; i++) {
            z = 0.0;
            for (int k = low; k <= TNT::min(j,high); k++) {
               z = z + V[i][k] * H[k][j];
            }
            V[i][j] = z;
         }
      }
   }

public:


   /** Check for symmetry, then construct the eigenvalue decomposition
   @param A    Square real (non-complex) matrix
   */

   Eigenvalue(const TNT::Array2D<Real> &A) {
      n = A.dim2();
      V = Array2D<Real>(n,n);
      d = Array1D<Real>(n);
      e = Array1D<Real>(n);

      issymmetric = 1;
      for (int j = 0; (j < n) && issymmetric; j++) {
         for (int i = 0; (i < n) && issymmetric; i++) {
            issymmetric = (A[i][j] == A[j][i]);
         }
      }

      if (issymmetric) {
         for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
               V[i][j] = A[i][j];
            }
         }
   
         // Tridiagonalize.
         tred2();
   
         // Diagonalize.
         tql2();

      } else {
         H = TNT::Array2D<Real>(n,n);
         ort = TNT::Array1D<Real>(n);
         
         for (int j = 0; j < n; j++) {
            for (int i = 0; i < n; i++) {
               H[i][j] = A[i][j];
            }
         }
   
         // Reduce to Hessenberg form.
         orthes();
   
         // Reduce Hessenberg to real Schur form.
         hqr2();
      }
   }


   /** Return the eigenvector matrix
   @return     V
   */

   void getV (TNT::Array2D<Real> &V_) {
      V_ = V;
      return;
   }

   /** Return the real parts of the eigenvalues
   @return     real(diag(D))
   */

   void getRealEigenvalues (TNT::Array1D<Real> &d_) {
      d_ = d;
      return ;
   }

   /** Return the imaginary parts of the eigenvalues
   in parameter e_.

   @pararm e_: new matrix with imaginary parts of the eigenvalues.
   */
   void getImagEigenvalues (TNT::Array1D<Real> &e_) {
      e_ = e;
      return;
   }

   
/** 
	Computes the block diagonal eigenvalue matrix.
    If the original matrix A is not symmetric, then the eigenvalue 
	matrix D is block diagonal with the real eigenvalues in 1-by-1 
	blocks and any complex eigenvalues,
    a + i*b, in 2-by-2 blocks, [a, b; -b, a].  That is, if the complex
    eigenvalues look like
<pre>

          u + iv     .        .          .      .    .
            .      u - iv     .          .      .    .
            .        .      a + ib       .      .    .
            .        .        .        a - ib   .    .
            .        .        .          .      x    .
            .        .        .          .      .    y
</pre>
        then D looks like
<pre>

            u        v        .          .      .    .
           -v        u        .          .      .    . 
            .        .        a          b      .    .
            .        .       -b          a      .    .
            .        .        .          .      x    .
            .        .        .          .      .    y
</pre>
    This keeps V a real matrix in both symmetric and non-symmetric
    cases, and A*V = V*D.

	@param D: upon return, the matrix is filled with the block diagonal 
	eigenvalue matrix.
	
*/
   void getD (TNT::Array2D<Real> &D) {
      D = Array2D<Real>(n,n);
      for (int i = 0; i < n; i++) {
         for (int j = 0; j < n; j++) {
            D[i][j] = 0.0;
         }
         D[i][i] = d[i];
         if (e[i] > 0) {
            D[i][i+1] = e[i];
         } else if (e[i] < 0) {
            D[i][i-1] = e[i];
         }
      }
   }
};

} //namespace JAMA


#endif
// JAMA_EIG_H

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲天堂a在线| 欧美三级电影在线观看| 国产九色精品成人porny| 五月婷婷综合在线| 午夜日韩在线电影| 亚洲一区二区三区精品在线| 亚洲一区在线观看视频| 亚洲第一福利视频在线| 久久精品国产久精国产爱| 狠狠网亚洲精品| 久久电影网站中文字幕| 国产美女在线精品| 色94色欧美sute亚洲13| 日韩亚洲欧美在线观看| 日本一区二区三区电影| 亚洲va天堂va国产va久| 高清不卡一区二区| 69av一区二区三区| 亚洲日穴在线视频| 国产在线看一区| 欧美日韩国产首页| 国产精品久久久久久久久图文区 | 国产精品青草综合久久久久99| 一区av在线播放| 成人性生交大片免费看视频在线| 欧美人动与zoxxxx乱| 最新日韩在线视频| 国产一区二区主播在线| 欧美久久久一区| 亚洲一区二区三区爽爽爽爽爽| 丁香天五香天堂综合| 欧美精品一区二区三| 免费欧美日韩国产三级电影| 色美美综合视频| 一级特黄大欧美久久久| 色综合网色综合| 亚洲欧美另类久久久精品2019| 国产91综合一区在线观看| 久久精品一级爱片| 成人国产免费视频| 椎名由奈av一区二区三区| 色欧美日韩亚洲| 亚洲成人午夜影院| 在线播放中文一区| 国产一区二区在线看| 国产视频一区在线观看| 成人开心网精品视频| 亚洲欧洲一区二区三区| 色婷婷综合久久久久中文一区二区| 亚洲乱码日产精品bd| 色吧成人激情小说| 老司机午夜精品| 国产精品福利一区二区三区| 日韩成人免费看| 国产欧美精品国产国产专区 | 国产精品欧美综合在线| 91亚洲国产成人精品一区二三| 亚洲午夜在线电影| 久久免费电影网| 欧美三级电影在线看| 激情综合色播五月| 亚洲第一电影网| 18欧美乱大交hd1984| 69堂亚洲精品首页| 国产91精品免费| 久久99久久精品| 亚洲电影一区二区| 亚洲人精品午夜| 久久天堂av综合合色蜜桃网 | 一区二区三区四区视频精品免费| 欧美久久久影院| 欧美私模裸体表演在线观看| 成人精品gif动图一区| 视频一区视频二区在线观看| 亚洲手机成人高清视频| 久久久不卡网国产精品二区| 日韩一区二区视频| 欧美一级一级性生活免费录像| 色屁屁一区二区| 欧美三电影在线| 欧美日产国产精品| 欧美日韩国产精品自在自线| 色婷婷av一区二区三区大白胸 | 亚洲欧洲韩国日本视频| 国产精品乱人伦中文| 中文字幕不卡的av| 欧美国产一区二区在线观看| 国产欧美日产一区| 国产精品乱码久久久久久| 久久久不卡网国产精品一区| 欧美国产日韩亚洲一区| 亚洲欧美国产高清| 亚洲不卡一区二区三区| 另类小说色综合网站| 国产成+人+日韩+欧美+亚洲| 国产成人免费视频一区| 一本大道久久a久久精二百| 欧美三级日韩在线| 精品国产不卡一区二区三区| 国产色91在线| 夜色激情一区二区| 极品尤物av久久免费看| 欧洲av一区二区嗯嗯嗯啊| 91麻豆精品国产| 亚洲欧洲精品一区二区精品久久久| 亚洲精品成人悠悠色影视| 丝袜亚洲另类欧美综合| 国产91在线观看| 欧美一级精品大片| 一区二区在线观看不卡| 国产剧情一区二区三区| 欧美一级日韩一级| 亚洲欧美日韩综合aⅴ视频| 久久爱www久久做| 欧美日韩黄色影视| 亚洲欧美另类在线| 国产不卡视频在线观看| 亚洲精品一线二线三线| 日韩精彩视频在线观看| 欧美最猛性xxxxx直播| 亚洲日韩欧美一区二区在线| 国产成人精品免费网站| 亚洲精品一区二区三区99| 日韩二区三区四区| 91精品婷婷国产综合久久性色| 一区二区三区波多野结衣在线观看| 国产黑丝在线一区二区三区| 欧美日韩精品系列| 亚洲一区在线观看网站| 在线视频欧美区| 午夜精品一区在线观看| 精品视频123区在线观看| 五月婷婷激情综合| 9191精品国产综合久久久久久 | 色哟哟亚洲精品| 亚洲一区在线观看免费观看电影高清| 一本一道综合狠狠老| 亚洲一区欧美一区| 欧美一区二区三区视频在线观看 | 欧美日韩视频在线观看一区二区三区| 中文字幕一区二区三| 欧美视频在线播放| 美女免费视频一区二区| 久久久久久久一区| 91蜜桃免费观看视频| 亚洲va在线va天堂| 国产色一区二区| 欧美视频中文字幕| 精品在线播放免费| 国产日产亚洲精品系列| 91久久免费观看| 国产呦萝稀缺另类资源| 一区二区三区四区蜜桃| 久久久91精品国产一区二区三区| 色综合天天综合色综合av| 午夜欧美一区二区三区在线播放| 中国色在线观看另类| 91久久国产综合久久| 国产美女娇喘av呻吟久久| 亚洲人妖av一区二区| 日韩欧美亚洲国产精品字幕久久久| 高清av一区二区| 奇米一区二区三区av| 亚洲永久免费视频| 亚洲欧美激情插| 中文字幕亚洲电影| 国产精品国产a| 中文字幕欧美激情一区| 国产日韩欧美在线一区| 国产午夜精品久久久久久免费视| 欧美一级夜夜爽| 日韩免费视频一区| 欧美电影免费观看完整版| 91精品国产综合久久久久久久久久 | 国产一区二区成人久久免费影院 | 日韩久久久精品| 欧美丰满美乳xxx高潮www| 欧美日韩成人综合在线一区二区| 色偷偷成人一区二区三区91 | 一区二区三区中文字幕电影 | 欧美在线制服丝袜| 欧美亚洲一区三区| 欧美日韩不卡一区二区| 日韩欧美一区在线| 精品国产3级a| 亚洲女厕所小便bbb| 亚洲国产精品久久人人爱| 美女在线视频一区| 高清国产一区二区| 欧美亚洲国产bt| 国产日韩欧美麻豆| 最新不卡av在线| 日韩影院精彩在线| 捆绑调教一区二区三区| 国产91丝袜在线播放九色| 91视频在线观看免费| 91精品国产综合久久蜜臀| www国产成人| 亚洲一区二区三区免费视频| 日本午夜精品视频在线观看|