亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? 一個Java實現的支持向量機(含源碼),SVM算法比較復雜
??
?? 第 1 頁 / 共 2 頁
字號:
Libsvm is a simple, easy-to-use, and efficient software for SVMclassification and regression. It can solve C-SVM classification,nu-SVM classification, one-class-SVM, epsilon-SVM regression, andnu-SVM regression. It also provides an automatic model selectiontool for C-SVM classification. This document explains the use oflibsvm.Libsvm is available at http://www.csie.ntu.edu.tw/~cjlin/libsvmPlease read the COPYRIGHT file before using libsvm.Quick Start===========If you are new to SVM and if the data is not large, please go to tools directory and use easy.py after installation. It does everything automatic -- from data scaling to parameter selection.Usage: easy.py training_file [testing_file]More information about parameter selction can be found intools/README.Installation============On Unix systems, type `make' to build the `svm-train' and `svm-predict'programs. Run them without arguments to show the usages of them.On other systems, consult `Makefile' to build them (e.g., see'Building Windows binaries' in this file) or use the pre-builtbinaries (Windows binaries are in the directory `windows').The format of training and testing data file is:<label> <index1>:<value1> <index2>:<value2> ......<label> is the target value of the training data. For classification,it should be an integer which identifies a class (multi-classclassification is supported). For regression, it's any realnumber. For one-class SVM, it's not used so can be any number. <index>is an integer starting from 1, <value> is a real number. The indicesmust be in an ascending order. The labels in the testing data file areonly used to calculate accuracy or error. If they are unknown, justfill this column with a number.There is a sample data for classification in this package:heart_scale.Type `svm-train heart_scale', and the program will read the trainingdata and output the model file `heart_scale.model'. If you have a testset called heart_scale.t, then you type `svm-predict heart_scale.theart_scale.model output' to see the prediction accuracy on the testdata. The `output' file contains the predicted class label.There are some other useful programs in this package.svm-scale:	This is a tool for scaling input data file.svm-toy:	This is a simple graphical interface which shows how SVM	separate data in a plane. You can click in the window to 	draw data points. Use "change" button to choose class 	1, 2 or 3 (i.e., up to three classes are supported), "load"	button to load data from a file, "save" button to save data to	a file, "run" button to obtain an SVM model, and "clear"	button to clear the window.	You can enter options in the bottom of the window, the syntax of	options is the same as `svm-train'.	Note that "load" and "save" consider data in the	classification but not the regression case. Each data point	has one label (the color) which must be 1, 2, or 3 and two	attributes (x-axis and y-axis values) in [0,1].	Type `make' in respective directories to build them.	You need Qt library to build the Qt version.	(You can download it from http://www.trolltech.com)	You need GTK+ library to build the GTK version.	(You can download it from http://www.gtk.org)		We use Visual C++ to build the Windows version.	The pre-built Windows binaries are in the windows directory.`svm-train' Usage=================Usage: svm-train [options] training_set_file [model_file]options:-s svm_type : set type of SVM (default 0)	0 -- C-SVC	1 -- nu-SVC	2 -- one-class SVM	3 -- epsilon-SVR	4 -- nu-SVR-t kernel_type : set type of kernel function (default 2)	0 -- linear: u'*v	1 -- polynomial: (gamma*u'*v + coef0)^degree	2 -- radial basis function: exp(-gamma*|u-v|^2)	3 -- sigmoid: tanh(gamma*u'*v + coef0)-d degree : set degree in kernel function (default 3)-g gamma : set gamma in kernel function (default 1/k)-r coef0 : set coef0 in kernel function (default 0)-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)-m cachesize : set cache memory size in MB (default 100)-e epsilon : set tolerance of termination criterion (default 0.001)-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)-b probability_estimates: whether to train an SVC or SVR model for probability estimates, 0 or 1 (default 0)-wi weight: set the parameter C of class i to weight*C in C-SVC (default 1)-v n: n-fold cross validation modeThe k in the -g option means the number of attributes in the input data.option -v randomly splits the data into n parts and calculates crossvalidation accuracy/mean squared error on them.`svm-predict' Usage===================Usage: svm-predict [options] test_file model_file output_fileoptions:-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yetmodel_file is the model file generated by svm-train.test_file is the test data you want to predict.svm-predict will produce output in the output_file.Tips on practical use=====================* Scale your data. For example, scale each attribute to [0,1] or [-1,+1].* For C-SVC, consider using the model selection tool in the tools directory.* nu in nu-SVC/one-class-SVM/nu-SVR approximates the fraction of training  errors and support vectors.* If data for classification are unbalanced (e.g. many positive and  few negative), try different penalty parameters C by -wi (see  examples below).* Specify larger cache size (i.e., larger -m) for huge problems.Examples========> svm-scale -l -1 -u 1 -s range train > train.scale> svm-scale -r range test > test.scaleScale each feature of the training data to be in [-1,1]. Scalingfactors are stored in the file range and then used for scaling thetest data.> svm-train -s 0 -c 1000 -t 2 -g 0.5 -e 0.00001 data_file Train a classifier with RBF kernel exp(-0.5|u-v|^2) and stoppingtolerance 0.00001> svm-train -s 3 -p 0.1 -t 0 -c 10 data_fileSolve SVM regression with linear kernel u'v and C=10, and epsilon = 0.1in the loss function.> svm-train -s 0 -c 10 -w1 1 -w-1 5 data_fileTrain a classifier with penalty 10 for class 1 and penalty 50for class -1.> svm-train -s 0 -c 500 -g 0.1 -v 5 data_fileDo five-fold cross validation for the classifier usingthe parameters C = 500 and gamma = 0.1> svm-train -s 0 -b 1 data_file> svm-predict -b 1 test_file data_file.model output_fileObtain a model with probability information and predict test data withprobability estimatesLibrary Usage=============These functions and structures are declared in the header file `svm.h'.You need to #include "svm.h" in your C/C++ source files and link yourprogram with `svm.cpp'. You can see `svm-train.c' and `svm-predict.c'for examples showing how to use them.Before you classify test data, you need to construct an SVM model(`svm_model') using training data. A model can also be saved ina file for later use. Once an SVM model is available, you can use itto classify new data.- Function: struct svm_model *svm_train(const struct svm_problem *prob,					const struct svm_parameter *param);    This function constructs and returns an SVM model according to    the given training data and parameters.    struct svm_problem describes the problem:		struct svm_problem	{		int l;		double *y;		struct svm_node **x;	};     where `l' is the number of training data, and `y' is an array containing    their target values. (integers in classification, real numbers in    regression) `x' is an array of pointers, each of which points to a sparse    representation (array of svm_node) of one training vector.    For example, if we have the following training data:    LABEL	ATTR1	ATTR2	ATTR3	ATTR4	ATTR5    -----	-----	-----	-----	-----	-----      1		  0	  0.1	  0.2	  0	  0      2		  0	  0.1	  0.3	 -1.2	  0      1		  0.4	  0	  0	  0	  0      2		  0	  0.1	  0	  1.4	  0.5      3		 -0.1	 -0.2	  0.1	  1.1	  0.1    then the components of svm_problem are:    l = 5    y -> 1 2 1 2 3    x -> [ ] -> (2,0.1) (3,0.2) (-1,?)	 [ ] -> (2,0.1) (3,0.3) (4,-1.2) (-1,?)	 [ ] -> (1,0.4) (-1,?)	 [ ] -> (2,0.1) (4,1.4) (5,0.5) (-1,?)	 [ ] -> (1,-0.1) (2,-0.2) (3,0.1) (4,1.1) (5,0.1) (-1,?)    where (index,value) is stored in the structure `svm_node':	struct svm_node	{		int index;		double value;	};    index = -1 indicates the end of one vector.     struct svm_parameter describes the parameters of an SVM model:	struct svm_parameter	{		int svm_type;		int kernel_type;		double degree;	/* for poly */		double gamma;	/* for poly/rbf/sigmoid */		double coef0;	/* for poly/sigmoid */		/* these are for training only */		double cache_size; /* in MB */

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美精品久久99| 亚洲成人av电影在线| 一区二区三区四区在线| 美女视频黄免费的久久| 99久久婷婷国产| 精品国产免费久久| 五月综合激情婷婷六月色窝| 国产福利91精品一区| 欧美人体做爰大胆视频| 中文字幕av一区 二区| 日韩电影免费一区| 91成人在线观看喷潮| 国产三级精品视频| 久久国产欧美日韩精品| 欧美在线观看视频在线| 国产精品久久久久久久久晋中 | 亚洲一区在线播放| 国产不卡视频一区| 欧美精品一区二区三区在线 | 国产精品久久久久久户外露出 | 69精品人人人人| 亚洲婷婷综合久久一本伊一区| 狠狠色丁香久久婷婷综合_中| 69久久99精品久久久久婷婷| 亚洲午夜av在线| 欧美最猛性xxxxx直播| 国产精品电影一区二区| 国产成人免费在线视频| 久久麻豆一区二区| 国产河南妇女毛片精品久久久| 精品免费国产一区二区三区四区| 日韩精品一卡二卡三卡四卡无卡| 欧美性色综合网| 亚洲r级在线视频| 欧美在线视频全部完| 亚洲激情成人在线| 色偷偷久久人人79超碰人人澡| 国产精品九色蝌蚪自拍| 在线影院国内精品| 亚洲一区二区美女| 欧美日韩精品免费观看视频| 天天操天天综合网| 日韩一区二区麻豆国产| 九色综合国产一区二区三区| 欧美精品一区二区精品网| 国产麻豆成人传媒免费观看| 欧美—级在线免费片| 91在线码无精品| 亚洲综合清纯丝袜自拍| 欧美午夜影院一区| 玖玖九九国产精品| 日本一区二区三区免费乱视频 | 国产精品美女久久久久久久 | 韩国午夜理伦三级不卡影院| 久久影院视频免费| www..com久久爱| 洋洋成人永久网站入口| 日韩三级视频在线看| 国内外成人在线视频| 中文一区二区完整视频在线观看| 99久久精品国产一区| 香蕉成人伊视频在线观看| 日韩亚洲欧美在线| 成人激情综合网站| 亚洲成a人v欧美综合天堂| 精品少妇一区二区三区免费观看 | 欧美aa在线视频| 国产视频911| 欧美探花视频资源| 韩国一区二区三区| 亚洲一区二区三区免费视频| 精品国一区二区三区| 99re6这里只有精品视频在线观看 99re8在线精品视频免费播放 | 国产乱一区二区| 一区二区免费在线播放| 欧美电影免费观看完整版| 99视频精品全部免费在线| 日本成人在线电影网| 日韩理论电影院| 久久婷婷一区二区三区| 欧美色精品在线视频| 粉嫩久久99精品久久久久久夜| 亚洲第一二三四区| 亚洲国产激情av| 欧美不卡在线视频| 欧美日韩精品二区第二页| 国产不卡免费视频| 蜜桃视频在线观看一区| 亚洲午夜免费电影| 国产精品理论片在线观看| 欧美电影免费观看高清完整版| 色婷婷综合激情| 成人激情综合网站| 国模一区二区三区白浆| 日本午夜精品一区二区三区电影 | 精品国产免费一区二区三区四区| 色婷婷久久一区二区三区麻豆| 国产一级精品在线| 麻豆91精品91久久久的内涵| 午夜天堂影视香蕉久久| 亚洲摸摸操操av| 国产亚洲欧美日韩在线一区| 日韩欧美综合在线| 欧美高清hd18日本| 欧美性大战久久久| 91久久精品日日躁夜夜躁欧美| 丁香六月综合激情| 国产91精品免费| 国产一区不卡视频| 国产乱淫av一区二区三区| 久久91精品久久久久久秒播| 奇米影视一区二区三区| 视频一区二区三区中文字幕| 亚洲网友自拍偷拍| 天天色天天操综合| 奇米一区二区三区| 老鸭窝一区二区久久精品| 一本一道波多野结衣一区二区| 成人av片在线观看| www.成人网.com| 99re这里只有精品首页| 色噜噜夜夜夜综合网| 色狠狠av一区二区三区| 欧美日韩综合色| 这里只有精品99re| 日韩欧美美女一区二区三区| wwww国产精品欧美| 国产日韩欧美精品一区| 国产精品久久久久影院老司 | 国产69精品久久777的优势| 国产一区二区在线看| 风间由美中文字幕在线看视频国产欧美 | 亚洲欧美一区二区视频| 亚洲日本护士毛茸茸| 悠悠色在线精品| 亚洲v精品v日韩v欧美v专区 | 亚洲第一综合色| 天堂成人国产精品一区| 国模无码大尺度一区二区三区| 国产成人超碰人人澡人人澡| 91丨porny丨户外露出| 欧美日韩一区二区三区四区 | 日本韩国精品在线| 欧美福利视频导航| 国产亚洲一区二区三区四区| 成人免费在线视频观看| 天堂一区二区在线| 成人综合日日夜夜| 欧美精品欧美精品系列| 国产色产综合色产在线视频| 亚洲久草在线视频| 麻豆一区二区三区| aaa国产一区| 日韩视频免费直播| 综合色天天鬼久久鬼色| 蜜臀久久久99精品久久久久久| 成人av资源网站| 欧美一区二区精品在线| 国产精品传媒视频| 麻豆精品视频在线观看免费| 91啪亚洲精品| 久久―日本道色综合久久| 亚洲一二三四在线| 国产成人av自拍| 在线播放日韩导航| 自拍偷拍亚洲综合| 精品一区免费av| 欧美美女bb生活片| 中文字幕一区二区三区蜜月| 久久99国产精品尤物| 欧美综合欧美视频| 亚洲.国产.中文慕字在线| 成人理论电影网| 精品国产第一区二区三区观看体验| 亚洲精品一卡二卡| 国产91精品在线观看| 精品日韩一区二区| 日韩二区三区在线观看| 91色九色蝌蚪| 中文成人av在线| 国产一区久久久| 精品免费国产二区三区| 日韩精品久久久久久| 欧美主播一区二区三区美女| 国产精品久久久久久久久晋中| 国产一区激情在线| 26uuu久久天堂性欧美| 奇米精品一区二区三区四区| 欧美视频自拍偷拍| 一区二区三区国产豹纹内裤在线| 成人性生交大片免费看中文网站| 精品国精品国产尤物美女| 日本美女一区二区三区视频| 7777精品伊人久久久大香线蕉超级流畅 | 欧美精品一区男女天堂| 热久久国产精品| 日韩视频在线一区二区| 日韩高清在线不卡| 日韩一区和二区| 久久99久久99|