亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? 一個Java實現的支持向量機(含源碼),SVM算法比較復雜
??
?? 第 1 頁 / 共 2 頁
字號:
Libsvm is a simple, easy-to-use, and efficient software for SVMclassification and regression. It can solve C-SVM classification,nu-SVM classification, one-class-SVM, epsilon-SVM regression, andnu-SVM regression. It also provides an automatic model selectiontool for C-SVM classification. This document explains the use oflibsvm.Libsvm is available at http://www.csie.ntu.edu.tw/~cjlin/libsvmPlease read the COPYRIGHT file before using libsvm.Quick Start===========If you are new to SVM and if the data is not large, please go to tools directory and use easy.py after installation. It does everything automatic -- from data scaling to parameter selection.Usage: easy.py training_file [testing_file]More information about parameter selction can be found intools/README.Installation============On Unix systems, type `make' to build the `svm-train' and `svm-predict'programs. Run them without arguments to show the usages of them.On other systems, consult `Makefile' to build them (e.g., see'Building Windows binaries' in this file) or use the pre-builtbinaries (Windows binaries are in the directory `windows').The format of training and testing data file is:<label> <index1>:<value1> <index2>:<value2> ......<label> is the target value of the training data. For classification,it should be an integer which identifies a class (multi-classclassification is supported). For regression, it's any realnumber. For one-class SVM, it's not used so can be any number. <index>is an integer starting from 1, <value> is a real number. The indicesmust be in an ascending order. The labels in the testing data file areonly used to calculate accuracy or error. If they are unknown, justfill this column with a number.There is a sample data for classification in this package:heart_scale.Type `svm-train heart_scale', and the program will read the trainingdata and output the model file `heart_scale.model'. If you have a testset called heart_scale.t, then you type `svm-predict heart_scale.theart_scale.model output' to see the prediction accuracy on the testdata. The `output' file contains the predicted class label.There are some other useful programs in this package.svm-scale:	This is a tool for scaling input data file.svm-toy:	This is a simple graphical interface which shows how SVM	separate data in a plane. You can click in the window to 	draw data points. Use "change" button to choose class 	1, 2 or 3 (i.e., up to three classes are supported), "load"	button to load data from a file, "save" button to save data to	a file, "run" button to obtain an SVM model, and "clear"	button to clear the window.	You can enter options in the bottom of the window, the syntax of	options is the same as `svm-train'.	Note that "load" and "save" consider data in the	classification but not the regression case. Each data point	has one label (the color) which must be 1, 2, or 3 and two	attributes (x-axis and y-axis values) in [0,1].	Type `make' in respective directories to build them.	You need Qt library to build the Qt version.	(You can download it from http://www.trolltech.com)	You need GTK+ library to build the GTK version.	(You can download it from http://www.gtk.org)		We use Visual C++ to build the Windows version.	The pre-built Windows binaries are in the windows directory.`svm-train' Usage=================Usage: svm-train [options] training_set_file [model_file]options:-s svm_type : set type of SVM (default 0)	0 -- C-SVC	1 -- nu-SVC	2 -- one-class SVM	3 -- epsilon-SVR	4 -- nu-SVR-t kernel_type : set type of kernel function (default 2)	0 -- linear: u'*v	1 -- polynomial: (gamma*u'*v + coef0)^degree	2 -- radial basis function: exp(-gamma*|u-v|^2)	3 -- sigmoid: tanh(gamma*u'*v + coef0)-d degree : set degree in kernel function (default 3)-g gamma : set gamma in kernel function (default 1/k)-r coef0 : set coef0 in kernel function (default 0)-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)-m cachesize : set cache memory size in MB (default 100)-e epsilon : set tolerance of termination criterion (default 0.001)-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)-b probability_estimates: whether to train an SVC or SVR model for probability estimates, 0 or 1 (default 0)-wi weight: set the parameter C of class i to weight*C in C-SVC (default 1)-v n: n-fold cross validation modeThe k in the -g option means the number of attributes in the input data.option -v randomly splits the data into n parts and calculates crossvalidation accuracy/mean squared error on them.`svm-predict' Usage===================Usage: svm-predict [options] test_file model_file output_fileoptions:-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yetmodel_file is the model file generated by svm-train.test_file is the test data you want to predict.svm-predict will produce output in the output_file.Tips on practical use=====================* Scale your data. For example, scale each attribute to [0,1] or [-1,+1].* For C-SVC, consider using the model selection tool in the tools directory.* nu in nu-SVC/one-class-SVM/nu-SVR approximates the fraction of training  errors and support vectors.* If data for classification are unbalanced (e.g. many positive and  few negative), try different penalty parameters C by -wi (see  examples below).* Specify larger cache size (i.e., larger -m) for huge problems.Examples========> svm-scale -l -1 -u 1 -s range train > train.scale> svm-scale -r range test > test.scaleScale each feature of the training data to be in [-1,1]. Scalingfactors are stored in the file range and then used for scaling thetest data.> svm-train -s 0 -c 1000 -t 2 -g 0.5 -e 0.00001 data_file Train a classifier with RBF kernel exp(-0.5|u-v|^2) and stoppingtolerance 0.00001> svm-train -s 3 -p 0.1 -t 0 -c 10 data_fileSolve SVM regression with linear kernel u'v and C=10, and epsilon = 0.1in the loss function.> svm-train -s 0 -c 10 -w1 1 -w-1 5 data_fileTrain a classifier with penalty 10 for class 1 and penalty 50for class -1.> svm-train -s 0 -c 500 -g 0.1 -v 5 data_fileDo five-fold cross validation for the classifier usingthe parameters C = 500 and gamma = 0.1> svm-train -s 0 -b 1 data_file> svm-predict -b 1 test_file data_file.model output_fileObtain a model with probability information and predict test data withprobability estimatesLibrary Usage=============These functions and structures are declared in the header file `svm.h'.You need to #include "svm.h" in your C/C++ source files and link yourprogram with `svm.cpp'. You can see `svm-train.c' and `svm-predict.c'for examples showing how to use them.Before you classify test data, you need to construct an SVM model(`svm_model') using training data. A model can also be saved ina file for later use. Once an SVM model is available, you can use itto classify new data.- Function: struct svm_model *svm_train(const struct svm_problem *prob,					const struct svm_parameter *param);    This function constructs and returns an SVM model according to    the given training data and parameters.    struct svm_problem describes the problem:		struct svm_problem	{		int l;		double *y;		struct svm_node **x;	};     where `l' is the number of training data, and `y' is an array containing    their target values. (integers in classification, real numbers in    regression) `x' is an array of pointers, each of which points to a sparse    representation (array of svm_node) of one training vector.    For example, if we have the following training data:    LABEL	ATTR1	ATTR2	ATTR3	ATTR4	ATTR5    -----	-----	-----	-----	-----	-----      1		  0	  0.1	  0.2	  0	  0      2		  0	  0.1	  0.3	 -1.2	  0      1		  0.4	  0	  0	  0	  0      2		  0	  0.1	  0	  1.4	  0.5      3		 -0.1	 -0.2	  0.1	  1.1	  0.1    then the components of svm_problem are:    l = 5    y -> 1 2 1 2 3    x -> [ ] -> (2,0.1) (3,0.2) (-1,?)	 [ ] -> (2,0.1) (3,0.3) (4,-1.2) (-1,?)	 [ ] -> (1,0.4) (-1,?)	 [ ] -> (2,0.1) (4,1.4) (5,0.5) (-1,?)	 [ ] -> (1,-0.1) (2,-0.2) (3,0.1) (4,1.1) (5,0.1) (-1,?)    where (index,value) is stored in the structure `svm_node':	struct svm_node	{		int index;		double value;	};    index = -1 indicates the end of one vector.     struct svm_parameter describes the parameters of an SVM model:	struct svm_parameter	{		int svm_type;		int kernel_type;		double degree;	/* for poly */		double gamma;	/* for poly/rbf/sigmoid */		double coef0;	/* for poly/sigmoid */		/* these are for training only */		double cache_size; /* in MB */

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
色婷婷精品久久二区二区蜜臀av| 日韩一区精品视频| 精品国产电影一区二区| 欧美色综合天天久久综合精品| 成人免费av在线| 粉嫩一区二区三区在线看 | 99精品偷自拍| 成人午夜视频网站| aa级大片欧美| 91国产丝袜在线播放| 欧美日韩一区二区在线视频| 欧美日韩激情在线| 91精选在线观看| 欧美成人伊人久久综合网| 久久综合一区二区| 中文字幕成人网| 亚洲综合在线观看视频| 亚洲aⅴ怡春院| 国产一区视频网站| 不卡视频一二三四| 欧美三级日韩三级国产三级| 91精品国产综合久久福利| 欧美tickle裸体挠脚心vk| 久久精品一级爱片| 一区二区高清在线| 极品尤物av久久免费看| 懂色av一区二区三区蜜臀| 在线日韩av片| 久久综合九色综合97婷婷| 国产精品天天摸av网| 亚洲国产乱码最新视频| 国产在线麻豆精品观看| www.亚洲国产| 欧美一区二区播放| 日本一区二区成人在线| 午夜精品久久久久影视| 国产成人亚洲综合色影视| 精品精品国产高清一毛片一天堂| 国产目拍亚洲精品99久久精品| 日韩精品一区二区三区视频播放 | 99国产一区二区三精品乱码| 在线观看av一区| 久久久久久久综合色一本| 樱花影视一区二区| 琪琪久久久久日韩精品| www.亚洲在线| 欧美精品视频www在线观看| 日韩免费看网站| 亚洲综合偷拍欧美一区色| 国产一区日韩二区欧美三区| 欧美日韩一区在线| 中文字幕第一区综合| 国产综合色视频| 91精品国产综合久久香蕉麻豆| 亚洲视频一区在线| 自拍av一区二区三区| 久久99精品网久久| 欧美日韩不卡一区二区| 精品欧美一区二区三区精品久久 | 国产精品电影一区二区| 男男视频亚洲欧美| 欧美在线观看18| 国产精品免费视频观看| 黑人巨大精品欧美一区| 91精品视频网| 午夜激情一区二区| 色88888久久久久久影院野外 | 91欧美激情一区二区三区成人| 精品国产伦一区二区三区观看体验 | 99视频一区二区| 久久久久久久综合日本| 激情五月激情综合网| 精品国产露脸精彩对白 | 国产成人精品www牛牛影视| 日韩欧美国产不卡| 蜜芽一区二区三区| 日韩亚洲电影在线| 捆绑调教美女网站视频一区| 日韩一区二区在线观看视频| 蜜臀av一区二区| 欧美大片日本大片免费观看| 一本到不卡精品视频在线观看| 国产精品乱人伦| a级精品国产片在线观看| 中文字幕亚洲不卡| 在线观看免费一区| 天天综合日日夜夜精品| 日韩欧美成人午夜| 国产一区在线看| 国产精品久久久久久久岛一牛影视 | 一区二区三区不卡视频| 91久久精品一区二区二区| 五月天激情小说综合| 精品久久久久久久久久久久久久久久久 | 色综合久久综合网| 亚洲一卡二卡三卡四卡无卡久久 | 欧美日韩精品一区二区| 日韩高清不卡在线| 久久综合久久鬼色| 91女厕偷拍女厕偷拍高清| 一区二区免费在线播放| 日韩一区二区三区免费观看| 国产大陆精品国产| 亚洲无线码一区二区三区| 欧美一区三区四区| 久久av中文字幕片| 亚洲免费视频中文字幕| 在线91免费看| 国产成人免费av在线| 蜜臀久久久久久久| 国产精品视频免费看| 精品视频999| 国产精品 欧美精品| 亚洲一区二区欧美日韩| 久久―日本道色综合久久| 色综合天天综合狠狠| 奇米精品一区二区三区四区 | 日韩电影在线观看电影| 国产午夜亚洲精品不卡| 欧美综合色免费| 欧美精品一二三四| 国产精品中文字幕日韩精品| 亚洲综合色区另类av| 欧美国产精品v| 日韩欧美国产精品| 一本一本大道香蕉久在线精品| 精品制服美女丁香| 亚洲一本大道在线| 国产亚洲一区字幕| 一区二区在线观看免费| 4438亚洲最大| 色八戒一区二区三区| 国产成人综合在线| 精品亚洲porn| 首页国产欧美日韩丝袜| 亚洲黄色录像片| 国产精品狼人久久影院观看方式| 精品欧美一区二区三区精品久久| 欧美日韩你懂的| 一本久道久久综合中文字幕| 成人国产免费视频| 91精品国产一区二区三区| 激情久久久久久久久久久久久久久久| 欧美一区二区三区公司| 色噜噜夜夜夜综合网| www.欧美.com| 成人永久免费视频| 成人小视频免费在线观看| 国内精品写真在线观看| 久久99久久99精品免视看婷婷| 天天综合网天天综合色| 欧美区视频在线观看| 日韩av一区二| 日本成人中文字幕| 性欧美疯狂xxxxbbbb| 夜夜夜精品看看| 亚洲电影欧美电影有声小说| 亚洲一二三区不卡| 日本亚洲三级在线| 日韩精品电影一区亚洲| 美女爽到高潮91| 极品销魂美女一区二区三区| 国模娜娜一区二区三区| 国产成人综合精品三级| 成人国产亚洲欧美成人综合网| 不卡av免费在线观看| 91久久精品一区二区二区| 精品视频资源站| 日韩欧美精品在线视频| 久久奇米777| 国产精品区一区二区三区| 中文字幕亚洲欧美在线不卡| 一级日本不卡的影视| 青青草原综合久久大伊人精品| 久久不见久久见免费视频7| 懂色av一区二区夜夜嗨| 99精品视频免费在线观看| 欧美激情中文字幕一区二区| 日韩av一区二区三区四区| 色伊人久久综合中文字幕| 成人欧美一区二区三区小说| 麻豆精品蜜桃视频网站| 国产女人aaa级久久久级| 国产午夜亚洲精品不卡| 亚洲欧美一区二区三区极速播放| 天堂av在线一区| 国产成人在线影院| 在线观看网站黄不卡| 精品免费99久久| 亚洲欧美在线aaa| 美女视频网站久久| gogo大胆日本视频一区| 91精品国产综合久久久久久 | 久久91精品国产91久久小草| 高清不卡在线观看| 91精品综合久久久久久| 国产精品久久久久影视| 理论电影国产精品| 亚洲精品中文字幕乱码三区| 成人免费看的视频|