亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? 一個Java實現的支持向量機(含源碼),SVM算法比較復雜
??
?? 第 1 頁 / 共 2 頁
字號:
		double eps;	/* stopping criteria */		double C;	/* for C_SVC, EPSILON_SVR, and NU_SVR */		int nr_weight;		/* for C_SVC */		int *weight_label;	/* for C_SVC */		double* weight;		/* for C_SVC */		double nu;	/* for NU_SVC, ONE_CLASS, and NU_SVR */		double p;	/* for EPSILON_SVR */		int shrinking;	/* use the shrinking heuristics */		int probability; /* do probability estimates */	};    svm_type can be one of C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR.    C_SVC:		C-SVM classification    NU_SVC:		nu-SVM classification    ONE_CLASS:		one-class-SVM    EPSILON_SVR:	epsilon-SVM regression    NU_SVR:		nu-SVM regression    kernel_type can be one of LINEAR, POLY, RBF, SIGMOID.    LINEAR:	u'*v    POLY:	(gamma*u'*v + coef0)^degree    RBF:	exp(-gamma*|u-v|^2)    SIGMOID:	tanh(gamma*u'*v + coef0)    cache_size is the size of the kernel cache, specified in megabytes.    C is the cost of constraints violation. (we usually use 1 to 1000)    eps is the stopping criterion. (we usually use 0.00001 in nu-SVC,    0.001 in others). nu is the parameter in nu-SVM, nu-SVR, and    one-class-SVM. p is the epsilon in epsilon-insensitive loss function    of epsilon-SVM regression. shrinking = 1 means shrinking is conducted;    = 0 otherwise. probability = 1 means model with probability    information is obtained; = 0 otherwise.    nr_weight, weight_label, and weight are used to change the penalty    for some classes (If the weight for a class is not changed, it is    set to 1). This is useful for training classifier using unbalanced    input data or with asymmetric misclassification cost.    nr_weight is the number of elements in the array weight_label and    weight. Each weight[i] corresponds to weight_label[i], meaning that    the penalty of class weight_label[i] is scaled by a factor of weight[i].        If you do not want to change penalty for any of the classes,    just set nr_weight to 0.    *NOTE* Because svm_model contains pointers to svm_problem, you can    not free the memory used by svm_problem if you are still using the    svm_model produced by svm_train().- Function: double svm_predict(const struct svm_model *model,                               const struct svm_node *x);    This function does classification or regression on a test vector x    given a model.    For a classification model, the predicted class for x is returned.    For a regression model, the function value of x calculated using    the model is returned. For an one-class model, +1 or -1 is    returned.- Function: void svm_cross_validation(const struct svm_problem *prob,	const struct svm_parameter *param, int nr_fold, double *target);    This function conducts cross validation. Data are separated to    nr_fold folds. Under given parameters, sequentially each fold is    validated using the model from training the remaining. Predicted    labels in the validation process are stored in the array called    target.- Function: int svm_get_svm_type(const struct svm_model *model);    This function gives svm_type of the model. Possible values of    svm_type are defined in svm.h.- Function: int svm_get_nr_class(const svm_model *model);    For a classification model, this function gives the number of    classes. For a regression or an one-class model, 2 is returned.- Function: void svm_get_labels(const svm_model *model, int* label)        For a classification model, this function outputs the name of    labels into an array called label. For regression and one-class    models, label is unchanged.- Function: double svm_get_svr_probability(const struct svm_model *model);    For a regression model with probability information, this function    outputs a value sigma > 0. For test data, we consider the    probability model: target value = predicted value + z, z: Laplace    distribution e^(-|z|/sigma)/(2sigma)    If the model is not for svr or does not contain required    information, 0 is returned.- Function: void svm_predict_values(const svm_model *model, 				    const svm_node *x, double* dec_values)    This function gives decision values on a test vector x given a    model.    For a classification model with nr_class classes, this function    gives nr_class*(nr_class-1)/2 decision values in the array    dec_values, where nr_class can be obtained from the function    svm_get_nr_class. The order is label[0] vs. label[1], ...,    label[0] vs. label[nr_class-1], label[1] vs. label[2], ...,    label[nr_class-2] vs. label[nr_class-1], where label can be    obtained from the function svm_get_labels.    For a regression model, label[0] is the function value of x    calculated using the model. For one-class model, label[0] is +1 or    -1.- Function: double svm_predict_probability(const struct svm_model *model, 	    const struct svm_node *x, double* prob_estimates);        This function does classification or regression on a test vector x    given a model with probability information.    For a classification model with probability information, this    function gives nr_class probability estimates in the array    prob_estimates. nr_class can be obtained from the function    svm_get_nr_class. The class with the highest probability is    returned. For all other situations, the array prob_estimates is    unchanged and the returned value is the same as that of    svm_predict.- Function: const char *svm_check_parameter(const struct svm_problem *prob,                                            const struct svm_parameter *param);    This function checks whether the parameters are within the feasible    range of the problem. This function should be called before calling    svm_train(). It returns NULL if the parameters are feasible,     otherwise an error message is returned. - Function: int svm_check_probability_model(const struct svm_model *model);    This function checks whether the model contains required    information to do probability estimates. If so, it returns    +1. Otherwise, 0 is returned. This function should be called    before calling svm_get_svr_probability and    svm_predict_probability.- Function: int svm_save_model(const char *model_file_name,			       const struct svm_model *model);    This function saves a model to a file; returns 0 on success, or -1    if an error occurs.- Function: struct svm_model *svm_load_model(const char *model_file_name);    This function returns a pointer to the model read from the file,    or a null pointer if the model could not be loaded.- Function: void svm_destroy_model(struct svm_model *model);    This function frees the memory used by a model.- Function: void svm_destroy_param(struct svm_parameter *param);    This function frees the memory used by a parameter set.Java version============The pre-compiled java class archive `libsvm.jar' and its source files arein the java directory. To run the programs, usejava -classpath libsvm.jar svm_train <arguments>java -classpath libsvm.jar svm_predict <arguments>java -classpath libsvm.jar svm_toyWe have tried IBM's and Sun's JDK.You may need to add Java runtime library (like classes.zip) to the classpath.You may need to increase maximum Java heap size.Library usages are similar to the C version. These functions are available:public class svm {	public static svm_model svm_train(svm_problem prob, svm_parameter param);	public static void svm_cross_validation(svm_problem prob, svm_parameter param, int nr_fold, double[] target);	public static int svm_get_svm_type(svm_model model);	public static int svm_get_nr_class(svm_model model);	public static void svm_get_labels(svm_model model, int[] label);	public static double svm_get_svr_probability(svm_model model);	public static void svm_predict_values(svm_model model, svm_node[] x, double[] dec_values);	public static double svm_predict(svm_model model, svm_node[] x);	public static double svm_predict_probability(svm_model model, svm_node[] x, double[] prob_estimates);	public static void svm_save_model(String model_file_name, svm_model model) throws IOException	public static svm_model svm_load_model(String model_file_name) throws IOException	public static String svm_check_parameter(svm_problem prob, svm_parameter param);	public static int svm_check_probability_model(svm_model model);}The library is in the "libsvm" package.Note that in Java version, svm_node[] is not ended with a node whose index = -1.Building Windows Binaries=========================Windows binaries are in the directory `windows'. To build them viaVisual C++, use the following steps:1. Open a dos command box and change to libsvm directory. Ifenvironment variables of VC++ have not been set, type"C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\bin\vcvars32.bat"You may have to modify the above according which version of VC++orwhere it is installed.2. Typenmake -f Makefile.win clean all3. (optional) To build python interface, download and install Python.Edit Makefile.win and change PYTHON_INC and PYTHON_LIB to your pythoninstallation. Typenmake -f Makefile.win python and then copy windows\python\svmc.dll to the python directory.Another way is to build them from Visual C++ environment. See detailsin libsvm faq.Additional Tools: Model Selection, Sub-sampling, etc.====================================================See the README file in the tools directory.Python Interface================See the README file in python directory.ADDITIONAL INFORMATION======================If you find LIBSVM helpful, please cite it asChih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector machines, 2001.Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvmLIBSVM implementation document is available athttp://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdfFor any questions and comments, please send your email tocjlin@csie.ntu.edu.twAcknowledgments:This work was supported in part by the National Science Council of Taiwan via the grant NSC 89-2213-E-002-013.The authors thank their group members and usersfor many helpful discussions and comments. They are listed inhttp://www.csie.ntu.edu.tw/~cjlin/libsvm/acknowledgements

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美一区二区不卡视频| 成人一区在线看| 综合自拍亚洲综合图不卡区| 久久久久久夜精品精品免费| 精品福利二区三区| 久久综合国产精品| 欧美一二三区精品| 精品国产乱码久久久久久图片| 日韩欧美你懂的| 91精品国产麻豆国产自产在线| 欧美精品日韩一区| 91精品国产手机| 精品卡一卡二卡三卡四在线| 欧美精品一区男女天堂| 久久久久久亚洲综合| 亚洲国产精品99久久久久久久久| 欧美国产精品一区二区三区| 日韩一区日韩二区| 亚洲综合视频在线观看| 国产一区二区三区四区在线观看| 国产精品一区二区视频| 91免费小视频| 欧美日韩国产免费一区二区| 日韩欧美国产午夜精品| 久久精品欧美一区二区三区不卡| 亚洲视频一区二区在线| 亚洲一区二区在线播放相泽| 蜜桃精品视频在线| 国产成人精品免费看| 欧美亚洲国产一区在线观看网站| 欧美人妇做爰xxxⅹ性高电影 | 欧美一区二区免费| 久久精品人人做人人爽人人| 一区二区成人在线观看| 麻豆免费看一区二区三区| 成人在线视频一区二区| 欧美撒尿777hd撒尿| 久久精品欧美一区二区三区麻豆| 亚洲欧美自拍偷拍色图| 麻豆视频一区二区| 91久久香蕉国产日韩欧美9色| 日韩一区二区三区精品视频| 国产精品区一区二区三区| 亚洲444eee在线观看| 国产成人啪免费观看软件 | 日韩在线a电影| 成人性视频网站| 欧美久久久一区| 国产精品美女久久福利网站| 日本少妇一区二区| 97se亚洲国产综合自在线 | 久久九九99视频| 午夜伊人狠狠久久| 91麻豆高清视频| 久久久久久久久蜜桃| 午夜精品一区在线观看| 成人精品小蝌蚪| 26uuu欧美| 日韩精品一区二区在线| 国产一二三精品| 国产成人8x视频一区二区| 欧美日韩国产一级片| 亚洲图片另类小说| 国产a级毛片一区| 日韩免费看网站| 蜜臀av国产精品久久久久| 国产欧美视频一区二区| 日韩av电影天堂| 欧美性受极品xxxx喷水| 一区二区视频在线| 91丝袜呻吟高潮美腿白嫩在线观看| 久久久久久久网| 国产精品小仙女| www久久精品| 国产麻豆精品在线| 国产三级精品在线| 国产精品一区在线观看乱码| 国产亚洲成aⅴ人片在线观看 | 日韩一区二区三区电影在线观看| 亚洲在线免费播放| 欧洲生活片亚洲生活在线观看| 国产精品久久久久久福利一牛影视| 国产成人午夜精品影院观看视频 | 日韩毛片一二三区| 99久久精品免费观看| 亚洲人成网站在线| 一本色道久久综合亚洲91| 亚洲另类在线视频| 欧美日韩国产天堂| 美女脱光内衣内裤视频久久网站| 日韩欧美二区三区| 国产一区二区三区黄视频| 欧美高清一级片在线观看| 成+人+亚洲+综合天堂| 亚洲精品亚洲人成人网在线播放| 欧洲一区二区三区在线| 亚洲电影激情视频网站| 欧美r级在线观看| 欧美一级艳片视频免费观看| 奇米精品一区二区三区四区| 精品少妇一区二区三区在线播放| 国产高清亚洲一区| 亚洲精品视频一区| 日韩欧美一级精品久久| 成人黄色777网| 五月婷婷久久丁香| 国产日产欧美精品一区二区三区| 91麻豆免费看| 精品一区二区三区久久| 亚洲天天做日日做天天谢日日欢| 欧美日韩在线一区二区| 国产麻豆精品一区二区| 亚洲激情图片小说视频| 精品福利一区二区三区免费视频| 北岛玲一区二区三区四区| 日韩国产精品久久| 国产精品久久久久久久久久久免费看| 欧美在线观看视频一区二区| 久草精品在线观看| 一区二区三区四区乱视频| 26uuu久久综合| 欧美日韩成人在线一区| av影院午夜一区| 久久国产剧场电影| 性做久久久久久免费观看| 中文一区一区三区高中清不卡| 欧美日韩mp4| 色婷婷综合久久久中文字幕| 国产一级精品在线| 日韩精品电影在线观看| 亚洲美女视频一区| 中文文精品字幕一区二区| 69p69国产精品| 欧美午夜精品久久久久久超碰| 国产精品88av| 久久99国内精品| 日韩精品高清不卡| 亚洲1区2区3区4区| 亚洲综合一二区| 最新久久zyz资源站| 久久久精品免费观看| 欧美一级欧美三级在线观看| 欧美色区777第一页| 97se亚洲国产综合自在线不卡 | 色婷婷一区二区| 成人动漫中文字幕| 粉嫩av一区二区三区在线播放| 精品一区二区三区av| 日本不卡高清视频| 美女性感视频久久| 久久精品国产亚洲高清剧情介绍| 午夜精品久久一牛影视| 日日夜夜免费精品| 日韩高清欧美激情| 蜜桃视频第一区免费观看| 免费观看在线色综合| 美女一区二区三区| 国产毛片一区二区| 成人精品小蝌蚪| 91视视频在线观看入口直接观看www| 欧美一卡在线观看| 91精品国产高清一区二区三区| 欧美精品视频www在线观看| 欧美精品 日韩| 欧美成人精精品一区二区频| 精品国产一二三| 欧美韩国日本不卡| 亚洲精品写真福利| 天堂影院一区二区| 国产在线乱码一区二区三区| 国产精品一级片在线观看| 国产成人综合网| 91污片在线观看| 欧美精品 国产精品| 久久久噜噜噜久久中文字幕色伊伊| 久久综合久久综合久久| 国产精品国产三级国产aⅴ中文| 亚洲欧美另类久久久精品2019| 亚洲一本大道在线| 激情综合网av| 99久久久无码国产精品| 欧美日韩视频在线第一区 | 色猫猫国产区一区二在线视频| 欧美日韩中文字幕一区| 精品国产乱码久久久久久图片| 国产精品久久久久aaaa樱花| 亚洲综合精品自拍| 国产麻豆成人精品| 欧美少妇bbb| 国产清纯白嫩初高生在线观看91| 亚洲品质自拍视频| 欧美日本高清视频在线观看| 日韩欧美国产电影| 中文字幕在线观看不卡视频| 人人狠狠综合久久亚洲| eeuss国产一区二区三区| 91精选在线观看| 亚洲欧美成人一区二区三区| 首页亚洲欧美制服丝腿| 91麻豆精品一区二区三区|