亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? faq.html

?? 一個Java實現(xiàn)的支持向量機(含源碼),SVM算法比較復雜
?? HTML
?? 第 1 頁 / 共 4 頁
字號:
<html>
<head>
<title>LIBSVM FAQ</title>
</head>
<body bgcolor="#ffffcc">

<a name="_TOP"><b><h1><a
href=http://www.csie.ntu.edu.tw/~cjlin/libsvm>LIBSVM</a>  FAQ </h1></b></a>
<b>last modified : </b>
Thu, 20 Oct 2005 09:03:48 GMT
<class="categories">
<li><a
href="#_TOP">All Questions</a>(52)</li>
<ul><b>
<li><a
href="#/Q1:_Some_courses_which_have_used_libsvm_as_a_tool">Q1:_Some_courses_which_have_used_libsvm_as_a_tool</a>(1)</li>
<li><a
href="#/Q2:_Installation_and_running_the_program">Q2:_Installation_and_running_the_program</a>(8)</li>
<li><a
href="#/Q3:_Data_preparation">Q3:_Data_preparation</a>(3)</li>
<li><a
href="#/Q4:_Training_and_prediction">Q4:_Training_and_prediction</a>(29)</li>
<li><a
href="#/Q5:_Graphic_Interface">Q5:_Graphic_Interface</a>(3)</li>
<li><a
href="#/Q6:_Java_version_of_libsvm">Q6:_Java_version_of_libsvm</a>(4)</li>
<li><a
href="#/Q7:_Python_Interface">Q7:_Python_Interface</a>(4)</li>
</b></ul>
</li>

<ul><ul class="headlines">
<li class="headlines_item"><a href="#faq1">Some courses which have used libsvm as a tool</a></li>
<li class="headlines_item"><a href="#f201">Where can I find documents of libsvm ?</a></li>
<li class="headlines_item"><a href="#f202">What are changes in previous versions?</a></li>
<li class="headlines_item"><a href="#f203">I would like to cite libsvm. Which paper should I cite ?   </a></li>
<li class="headlines_item"><a href="#f204">I would like to use libsvm in my software. Is there any license problem?</a></li>
<li class="headlines_item"><a href="#f205">Is there a repository of additional tools based on libsvm?</a></li>
<li class="headlines_item"><a href="#f206">On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </a></li>
<li class="headlines_item"><a href="#f207">I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</a></li>
<li class="headlines_item"><a href="#f208">I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </a></li>
<li class="headlines_item"><a href="#f301">Why sometimes not all attributes of a data appear in the training/model files ?</a></li>
<li class="headlines_item"><a href="#f302">What if my data are non-numerical ?</a></li>
<li class="headlines_item"><a href="#f303">Why do you consider sparse format ? Will the training of dense data be much slower ?</a></li>
<li class="headlines_item"><a href="#f401">The output of training C-SVM is like the following. What do they mean?</a></li>
<li class="headlines_item"><a href="#f402">Can you explain more about the model file?</a></li>
<li class="headlines_item"><a href="#f403">Should I use float or double to store numbers in the cache ?</a></li>
<li class="headlines_item"><a href="#f404">How do I choose the kernel?</a></li>
<li class="headlines_item"><a href="#f405">Does libsvm have special treatments for linear SVM?</a></li>
<li class="headlines_item"><a href="#f406">The number of free support vectors is large. What should I do?</a></li>
<li class="headlines_item"><a href="#f407">Should I scale training and testing data in a similar way?</a></li>
<li class="headlines_item"><a href="#f408">Does it make a big difference  if I scale each attribute to [0,1] instead of [-1,1]?</a></li>
<li class="headlines_item"><a href="#f409">The prediction rate is low. How could I improve it?</a></li>
<li class="headlines_item"><a href="#f410">My data are unbalanced. Could libsvm handle such problems?</a></li>
<li class="headlines_item"><a href="#f411">What is the difference between nu-SVC and C-SVC?</a></li>
<li class="headlines_item"><a href="#f412">The program keeps running without showing any output. What should I do?</a></li>
<li class="headlines_item"><a href="#f413">The program keeps running (with output, i.e. many dots). What should I do?</a></li>
<li class="headlines_item"><a href="#f414">The training time is too long. What should I do?</a></li>
<li class="headlines_item"><a href="#f415">How do I get the decision value(s)?</a></li>
<li class="headlines_item"><a href="#f4151">How do I get the distance between a point and the hyperplane?</a></li>
<li class="headlines_item"><a href="#f416">For some problem sets if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</a></li>
<li class="headlines_item"><a href="#f417">How do I disable screen output of svm-train and svm-predict ?</a></li>
<li class="headlines_item"><a href="#f418">I would like to use my own kernel but find out that there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</a></li>
<li class="headlines_item"><a href="#f419">What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?</a></li>
<li class="headlines_item"><a href="#f420">After doing cross validation, why there is no model file outputted ?</a></li>
<li class="headlines_item"><a href="#f421">I would like to try different random partition for cross validation, how could I do it ?</a></li>
<li class="headlines_item"><a href="#f422">I would like to solve L2-SVM (i.e., error term is quadratic). How should I modify the code ?</a></li>
<li class="headlines_item"><a href="#f423">There seems to be a zero division ?</a></li>
<li class="headlines_item"><a href="#f424">How do I choose parameters for one-class svm as training data are in only one class?</a></li>
<li class="headlines_item"><a href="#f425">Why training a probability model (i.e., -b 1) takes longer time</a></li>
<li class="headlines_item"><a href="#f426">Why using the -b option does not give me better accuracy?</a></li>
<li class="headlines_item"><a href="#f427">Why the code gives NaN (not a number) results?</a></li>
<li class="headlines_item"><a href="#f428">Why on windows sometimes grid.py fails?</a></li>
<li class="headlines_item"><a href="#f501">How can I save images drawn by svm-toy?</a></li>
<li class="headlines_item"><a href="#f502">I press the "load" button to load data points but why svm-toy does not draw them ?</a></li>
<li class="headlines_item"><a href="#f503">I would like svm-toy to handle more than three classes of data, what should I do ?</a></li>
<li class="headlines_item"><a href="#f601">What is the difference between Java version and C++ version of libsvm?</a></li>
<li class="headlines_item"><a href="#f602">Is the Java version significantly slower than the C++ version?</a></li>
<li class="headlines_item"><a href="#f603">While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</a></li>
<li class="headlines_item"><a href="#f604">Why you have the main source file svm.m4 and then transform it to svm.java?</a></li>
<li class="headlines_item"><a href="#f702">Using python on MS windows, it fails to load the dll file.</a></li>
<li class="headlines_item"><a href="#f703">How to modify the python interface on MS windows and rebuild the dll file ?</a></li>
<li class="headlines_item"><a href="#f704">Except the python-C++ interface provided, could I use Jython to call libsvm ?</a></li>
<li class="headlines_item"><a href="#f705">How could I install the python interface on Mac OS? </a></li>
</ul></ul>


<hr size="5" noshade />
<p/>
  
<a name="/Q1:_Some_courses_which_have_used_libsvm_as_a_tool"></a>
<a name="faq1"><b>Q: Some courses which have used libsvm as a tool</b></a>
<br/>                                                                                
<ul>
<li><a href=http://lmb.informatik.uni-freiburg.de/lectures/svm_seminar/>Institute for Computer Science,           
Faculty of Applied Science, University of Freiburg, Germany 
</a>
<li> <a href=http://www.cs.vu.nl/~elena/ml.html>
Division of Mathematics and Computer Science. 
Faculteit der Exacte Wetenschappen 
Vrije Universiteit, The Netherlands. </a>
<li>
<a href=http://www.cae.wisc.edu/~ece539/matlab/>
Electrical and Computer Engineering Department, 
University of Wisconsin-Madison 
</a>
<li>
<a href=http://www.hpl.hp.com/personal/Carl_Staelin/cs236601/project.html>
Technion (Israel Institute of Technology), Israel.
<li>
<a href=http://www.cise.ufl.edu/~fu/learn.html>
Computer and Information Sciences Dept., University of Florida</a>
<li>
<a href=http://www.uonbi.ac.ke/acad_depts/ics/course_material/machine_learning/ML_and_DM_Resources.html>
The Institute of Computer Science,
University of Nairobi, Kenya.</a>
<li>
<a href=http://cerium.raunvis.hi.is/~tpr/courseware/svm/hugbunadur.html>
Applied Mathematics and Computer Science, University of Iceland.
<li>
<a href=http://chicago05.mlss.cc/tiki/tiki-read_article.php?articleId=2>
SVM tutorial in machine learning
summer school, University of Chicago, 2005.
</a>
</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f201"><b>Q: Where can I find documents of libsvm ?</b></a>
<br/>                                                                                
<p>
In the package there is a README file which 
details all options, data format, and library calls.
The model selection tool and the python interface
have a separate README under the directory python.
The guide
<A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
A practical guide to support vector classification
</A> shows beginners how to train/test their data.
The paper <a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">LIBSVM
: a library for support vector machines</a> discusses the implementation of
libsvm in detail.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f202"><b>Q: What are changes in previous versions?</b></a>
<br/>                                                                                
<p>See <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/log">the change log</a>.

<p> You can download earlier versions 
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles">here</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f203"><b>Q: I would like to cite libsvm. Which paper should I cite ?   </b></a>
<br/>                                                                                
<p>
Please cite the following document:
<p>
Chih-Chung Chang and Chih-Jen Lin, LIBSVM
: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
<p>
The bibtex format is as follows
<pre>
@Manual{CC01a,
  author =	 {Chih-Chung Chang and Chih-Jen Lin},
  title =	 {{LIBSVM}: a library for support vector machines},
  year =	 {2001},
  note =	 {Software available at \url{http://www.csie.ntu.edu.tw/~cjlin/libsvm}}
}
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f204"><b>Q: I would like to use libsvm in my software. Is there any license problem?</b></a>
<br/>                                                                                
<p>
The libsvm license ("the modified BSD license")
is compatible with many
free software licenses such as GPL. Hence, it is very easy to
use libsvm in your software.
It can also be used in commercial products.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f205"><b>Q: Is there a repository of additional tools based on libsvm?</b></a>
<br/>                                                                                
<p>
Yes, see <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvmtools">libsvm 
tools</a>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f206"><b>Q: On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </b></a>
<br/>                                                                                

<p>
This usually happens if you compile the code
on one machine and run it on another which has incompatible
libraries.
Try to recompile the program on that machine or use static linking.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f207"><b>Q: I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</b></a>
<br/>                                                                                

<p>
Build it as a project by choosing "Win32 Project."
On the other hand, for "svm-train" and "svm-predict"
you want to choose "Win32 Console Project."
After libsvm 2.5, you can also use the file Makefile.win.
See details in README.


<p>
If you are not using Makefile.win and see the following 
link error
<pre>
LIBCMTD.lib(wwincrt0.obj) : error LNK2001: unresolved external symbol
_wWinMain@16
</pre>
you may have selected a wrong project type.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f208"><b>Q: I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </b></a>
<br/>                                                                                

<p>
You need to open a command window 
and type  svmtrain.exe to see all options.
Some examples are in README file.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f301"><b>Q: Why sometimes not all attributes of a data appear in the training/model files ?</b></a>
<br/>                                                                                
<p>
libsvm uses the so called "sparse" format where zero
values do not need to be stored. Hence a data with attributes
<pre>
1 0 2 0
</pre>
is represented as
<pre>
1:1 3:2
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f302"><b>Q: What if my data are non-numerical ?</b></a>
<br/>                                                                                
<p>
Currently libsvm supports only numerical data.
You may have to change non-numerical data to 
numerical. For example, you can use several
binary attributes to represent a categorical
attribute.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f303"><b>Q: Why do you consider sparse format ? Will the training of dense data be much slower ?</b></a>
<br/>                                                                                
<p>
This is a controversial issue. The kernel
evaluation (i.e. inner product) of sparse vectors is slower 
so the total training time can be at least twice or three times
of that using the dense format.
However, we cannot support only dense format as then we CANNOT
handle extremely sparse cases. Simplicity of the code is another
concern. Right now we decide to support
the sparse format only.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
在线观看网站黄不卡| 久久 天天综合| 国产精品久久久久久久久图文区| 欧美一区三区二区| 欧美久久久久中文字幕| 欧美午夜精品一区二区三区| 色8久久精品久久久久久蜜| 成人国产亚洲欧美成人综合网| 国产高清不卡一区二区| 丰满放荡岳乱妇91ww| 成人动漫在线一区| 91免费版在线| 在线免费亚洲电影| 538在线一区二区精品国产| 日韩一区二区三区免费看 | 欧美一级艳片视频免费观看| 色狠狠综合天天综合综合| 色噜噜偷拍精品综合在线| 欧美日韩精品福利| 日韩一级片在线观看| 精品成人免费观看| 中文字幕国产精品一区二区| 亚洲日本免费电影| 五月天中文字幕一区二区| 精品在线视频一区| 色综合视频在线观看| 欧美精品vⅰdeose4hd| 精品剧情在线观看| 中文字幕一区二区三区不卡| 亚洲成人激情社区| 国产精品一色哟哟哟| 91免费观看视频在线| 日韩欧美一二区| 一区免费观看视频| 麻豆精品一二三| 99国产欧美久久久精品| 欧美一区二区精品久久911| 日本一区二区视频在线观看| 亚洲综合在线视频| 国产一区在线精品| 欧美三级韩国三级日本三斤| 国产人成一区二区三区影院| 午夜精品久久久久久久久久久| 国产成人av电影在线播放| 欧美综合天天夜夜久久| 国产精品丝袜在线| 久久99国产精品久久99 | 亚洲午夜视频在线观看| 国产在线精品一区二区三区不卡| 99精品视频在线观看免费| 日韩三级中文字幕| 性做久久久久久免费观看| 成人性生交大片免费看在线播放| 91精品国产麻豆| 亚洲精品第1页| 成人一二三区视频| 国产亚洲综合av| 免费精品视频最新在线| 在线精品视频小说1| 国产精品久久久久影院老司| 国产自产高清不卡| 欧美不卡激情三级在线观看| 亚洲影视在线观看| 91蜜桃婷婷狠狠久久综合9色| 久久精子c满五个校花| 久久精品国产一区二区三| 欧美日韩一区二区电影| 夜夜揉揉日日人人青青一国产精品| 成人午夜激情片| 久久精品欧美一区二区三区不卡 | 亚洲人午夜精品天堂一二香蕉| 美女免费视频一区| 91精品国产高清一区二区三区蜜臀| 亚洲精品国产无天堂网2021| 99在线精品视频| 专区另类欧美日韩| 91视频观看免费| 樱花影视一区二区| 色婷婷av一区二区三区之一色屋| 国产精品国产三级国产aⅴ原创| 从欧美一区二区三区| 国产精品入口麻豆九色| 成人激情综合网站| 中文字幕中文字幕中文字幕亚洲无线| 国产成人自拍网| 国产精品久久久久影院亚瑟| 97超碰欧美中文字幕| 一区二区高清在线| 欧美老女人第四色| 久草精品在线观看| 中文字幕av一区二区三区| 99麻豆久久久国产精品免费 | 欧美一区二区三区啪啪| 男男gaygay亚洲| 久久亚区不卡日本| 99久久er热在这里只有精品66| 亚洲欧美偷拍三级| 制服.丝袜.亚洲.中文.综合| 精品一区二区免费| 欧美国产97人人爽人人喊| 色综合久久久久综合99| 午夜亚洲国产au精品一区二区| 欧美电影免费观看高清完整版在线| 国产精品一级在线| 亚洲男人都懂的| 日韩视频不卡中文| 99国产精品久久久久| 日韩在线a电影| 国产欧美一区二区精品性色超碰| 91丨九色丨尤物| 免费成人美女在线观看.| 国产精品国产三级国产普通话三级| 在线观看区一区二| 国产精品自在在线| 亚洲成a人片在线观看中文| 国产日韩欧美在线一区| 欧美性受极品xxxx喷水| 国产精品资源网站| 一区二区免费看| 国产精品美女久久久久久| 欧美一区二区私人影院日本| 成人精品国产一区二区4080| 麻豆成人久久精品二区三区小说| 综合久久久久综合| 精品卡一卡二卡三卡四在线| 色菇凉天天综合网| 粉嫩av一区二区三区| 喷水一区二区三区| 亚洲午夜久久久久久久久电影院| 久久久久久免费| 欧美一区永久视频免费观看| 91女厕偷拍女厕偷拍高清| 国产精品1024| 美日韩黄色大片| 亚洲第一狼人社区| 亚洲精品欧美综合四区| 国产精品久久网站| 久久免费视频色| 精品理论电影在线观看| 欧美区一区二区三区| 91久久精品一区二区三区| 99久久er热在这里只有精品15| 国产一区二区不卡在线| 精品伊人久久久久7777人| 五月天亚洲精品| 午夜精品一区在线观看| 亚洲一区二区在线免费看| 亚洲蜜臀av乱码久久精品蜜桃| 中文字幕精品一区二区精品绿巨人| 欧美va亚洲va在线观看蝴蝶网| 精品少妇一区二区三区视频免付费| caoporen国产精品视频| 成人一区二区三区在线观看| 国产电影一区在线| 成人午夜电影久久影院| 国产传媒日韩欧美成人| 高潮精品一区videoshd| 懂色av噜噜一区二区三区av| 国产福利精品一区二区| 成人精品视频一区| av一区二区久久| 在线欧美日韩精品| 69久久夜色精品国产69蝌蚪网| 欧美高清精品3d| 精品日韩在线观看| 国产欧美一区二区精品久导航| 久久久亚洲精华液精华液精华液 | 亚洲精品成a人| 亚洲国产精品影院| 日韩国产一区二| 久久91精品久久久久久秒播| 国产不卡视频一区| 一本久久a久久精品亚洲| 欧美艳星brazzers| 日韩一级免费一区| 国产亚洲精久久久久久| 综合激情成人伊人| 欧美aaa在线| 不卡av在线免费观看| 欧美日免费三级在线| 精品福利一区二区三区免费视频| 精品噜噜噜噜久久久久久久久试看 | 日韩一级黄色片| 国产欧美一区二区在线| 一区二区三区中文字幕精品精品 | 日韩三级伦理片妻子的秘密按摩| 精品日产卡一卡二卡麻豆| 国产精品乱码久久久久久 | 欧美精品123区| 国产日韩精品一区| 亚洲成人福利片| 国产xxx精品视频大全| 欧美日韩视频专区在线播放| 久久综合成人精品亚洲另类欧美 | 日韩国产一区二| 国产毛片一区二区| 欧美吻胸吃奶大尺度电影 | 中文字幕国产一区| 美女诱惑一区二区| 欧美网站一区二区|