亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? 一個Java實現的支持向量機(含源碼),SVM算法比較復雜
??
字號:
Python-to-libsvm interfaceIntroduction============Python (http://www.python.org/) is a programming language suitable forrapid development. This python-to-libsvm interface is developed so users can easily experiment with libsvm using python. The interface is developed with SWIG, The original idea and the SWIG interface file was provided by Carl Staelin(staelin@hpl.hp.com) from HP Labs. The interface was integrated into thelibsvm package by Li-lun Wang (llwang@infor.org) from National TaiwanUniversity. Chih-Chung Chang (b4506055@csie.ntu.edu.tw) from NationalTaiwan University also contributed a lot of useful suggestions and help.Installation============The build process for the various Unix systems is as follows:Before you build the module, you need to find out the python includedirectory, which is typically located at /usr/local/include/python2.4 or/usr/include/python. You can set the variable PYTHON_INCLUDEDIR inMakefile manually or use something like the following:	make PYTHON_INCLUDEDIR=/usr/include/python allAlthough the interface is generated by SWIG, it is not necessary tohave SWIG installed because the generated svmc_wrap.c is included inthis package (It was generated using SWIG 1.3.21). If you prefergenerating the interface with SWIG on your own, you can simply removethe generated files with	make morecleanbefore building the module.When the build process completes, a shared object called svmc.so will becreated.For win32 systems, the shared library svmc.dll is ready in thedirectory windows/python. You need to copy it to this directory.  Thedll file depends on different versions of python, so you may have tore-make it by following the instruction of building windows binariesin libsvm README.Usage=====To use the module, the files svm.py and the shared library (namely svmc.soor svmc.dll) must be placed in the current directory, the python librarydirectory, or the directory where the environment variable PYTHONPATHpoints to. The user then imports everything in svm.py to use libsvm inpython:	from svm import *There are three classes in svm.py, namely svm_parameter, svm_problem, andsvm_model.svm_parameter is used to set the parameters of the trainingprocess. The attributes in svm_parameter include svm_type,kernel_type, degree, gamma, coef0, nu, cache_size, C, eps, p,shrinking, nr_weight, weight_label, and weight. Available svm typesinclude C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, and NU_SVR. Availablekernel types include LINEAR, POLY, RBF, and SIGMOID. The user cansetup the parameters with the constructor and keyword arguments:	param = svm_parameter(kernel_type = LINEAR, C = 10)The user can also modify the parameters later:	param.kernel_type = RBFsvm_problem is used to hold the training data for the problem. Theconstructor takes two arguments; the first of them is the list of labels,and the other is the list of samples. For example	prob = svm_problem([1,-1],[[1,0,1],[-1,0,-1]])or equivalently	prob = svm_problem([1,-1],[{1:1,3:1},{1:-1,3:-1}])Once the parameter and problem are ready, we can construct the model:	m = svm_model(prob, param)To conduct n-fold cross validation; predicted labels in the validationprocess are returned.	target = cross_validation(prob, param, n)To predict a new sample with the model:	r = m.predict([1, 1, 1])To obtain decision values of predicting a sample:	d = m.predict_values([1, 1, 1])	To predict a new sample and obtain probability estimates;return value is a dict that maps labels to probabilities.	prd, prb = m.predict_probability([1, 1, 1])	sample of prd : 1.0	sample of prb : {1:0.6, -1:0.4}To obtain sigma of the probability density function for regression;see ../README for the definition of the function.	sigma = m.get_svr_probability()To obtain the probability density function for regression; see../README for the definition of the function.	pdf = m.get_svr_pdf()	probability = pdf(z)To save the model to a file:	m.save('test.model')and to load the model from a file:	m = svm_model('test.model')Examples========There are two examples in this package. The one is svm_test.py, and theother is test_cross_validation.py.svm_test.py tests various kernels on a three-class problem withC-SVM. It also demonstrates how to obtain decision values andprobability estimates.test_cross_validation.py demonstrates loading data from a file anddoes a ten-fold cross validation on the heart_scale dataset. It makesuse of cross_validation.py which calls the C++ cross validationsubroutine.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
中文字幕亚洲欧美在线不卡| 久久久午夜精品理论片中文字幕| 国产精品久久一卡二卡| 国产一区二三区| 亚洲精品在线免费观看视频| 激情亚洲综合在线| 久久久精品tv| 99re热这里只有精品视频| 亚洲日本在线看| 欧美色手机在线观看| 日韩国产欧美三级| 久久久一区二区| 成人av资源站| 亚洲国产日日夜夜| 欧美日韩高清一区| 蜜臀av性久久久久av蜜臀妖精| 精品国产亚洲一区二区三区在线观看| 国产一区在线视频| 亚洲日本在线a| 91精品国产入口在线| 久久99精品一区二区三区三区| www国产精品av| 99精品1区2区| 天天色 色综合| 久久久久一区二区三区四区| 91亚洲精华国产精华精华液| 日韩va欧美va亚洲va久久| 亚洲精品一区二区三区99| 成人久久18免费网站麻豆| 亚洲国产一区二区视频| 精品毛片乱码1区2区3区| 成人av动漫在线| 日产国产高清一区二区三区| 欧美激情艳妇裸体舞| 欧美日韩亚洲另类| 国产白丝网站精品污在线入口| 亚洲一区二区精品久久av| 欧美精品一区二区三区蜜臀| 91啦中文在线观看| 狠狠狠色丁香婷婷综合激情| 亚洲精品日韩一| 精品成人在线观看| 在线观看日产精品| 国产精品影视网| 亚洲bdsm女犯bdsm网站| 国产日产欧美精品一区二区三区| 欧美日韩情趣电影| 波多野结衣在线一区| 免费高清在线视频一区·| 亚洲欧美日韩综合aⅴ视频| 精品国产一区久久| 欧美精品一二三| 不卡电影免费在线播放一区| 韩国成人精品a∨在线观看| 五月天一区二区三区| 国产精品电影一区二区三区| 日韩午夜在线影院| 欧美日韩精品系列| 91亚洲资源网| 成人国产精品免费观看| 精品在线视频一区| 日韩精品亚洲一区| 一区二区三区精密机械公司| 中文字幕一区二区三区视频| 2017欧美狠狠色| 日韩一级二级三级| 制服丝袜成人动漫| 欧美日韩一区二区在线观看视频 | 日韩一级二级三级| 欧美日韩专区在线| 一本一道久久a久久精品综合蜜臀| 国产aⅴ精品一区二区三区色成熟| 黑人精品欧美一区二区蜜桃 | 亚洲欧美激情小说另类| 日本一区二区三区四区在线视频 | 成人av影视在线观看| 国产麻豆视频精品| 国产在线精品国自产拍免费| 激情五月婷婷综合网| 国模大尺度一区二区三区| 韩国v欧美v亚洲v日本v| 国产一区二区三区免费| 极品销魂美女一区二区三区| 久久精品国产亚洲高清剧情介绍 | 国产一区二区三区免费播放| 免费久久99精品国产| 精品在线播放午夜| 九九精品一区二区| 狠狠色丁香久久婷婷综| 国产河南妇女毛片精品久久久| 国产精品一区二区三区99| 国产精品小仙女| 91亚洲资源网| 欧美日韩精品一区二区在线播放| 91精品免费观看| 欧美成人伊人久久综合网| 精品福利一区二区三区免费视频| 国产人成一区二区三区影院| 国产精品久久毛片a| 亚洲精品国产高清久久伦理二区| 亚洲激情av在线| 日韩中文字幕区一区有砖一区 | 亚洲国产精品久久久久婷婷884 | 成人免费视频在线观看| 亚洲啪啪综合av一区二区三区| 亚洲国产sm捆绑调教视频| 免费高清视频精品| 成人高清免费观看| 欧美亚洲国产一区二区三区 | 日韩视频在线一区二区| 久久一留热品黄| 亚洲日本在线视频观看| 日本午夜一区二区| 国产精品一区二区黑丝| 色综合天天在线| 欧美一级淫片007| 国产精品乱码一区二区三区软件| 亚洲精品欧美在线| 激情深爱一区二区| 在线视频一区二区三区| 日韩久久精品一区| 亚洲美女少妇撒尿| 精品系列免费在线观看| 色综合久久综合网欧美综合网| 日韩欧美资源站| 亚洲人成在线播放网站岛国| 日本亚洲天堂网| 91浏览器在线视频| 欧美精品一区二区三区高清aⅴ | 欧美日韩精品一区二区在线播放| 久久新电视剧免费观看| 亚洲第一成年网| 丰满少妇久久久久久久| 欧美一区二区三区四区在线观看| 国产精品嫩草久久久久| 麻豆91免费观看| 在线日韩一区二区| 国产精品嫩草影院av蜜臀| 精品一区二区三区影院在线午夜| 在线亚洲免费视频| 国产精品素人一区二区| 理论片日本一区| 欧美在线一二三| 中文字幕日韩av资源站| 久久99国内精品| 3d成人h动漫网站入口| 亚洲精品自拍动漫在线| 国产高清在线观看免费不卡| 91精品国产91久久综合桃花 | 亚洲成av人片在www色猫咪| 国产激情视频一区二区三区欧美| 日韩一区二区电影在线| 午夜精品久久久久| 欧洲av在线精品| 自拍偷在线精品自拍偷无码专区 | 国产不卡高清在线观看视频| 欧美本精品男人aⅴ天堂| 亚洲电影视频在线| 色8久久人人97超碰香蕉987| 国产精品视频你懂的| 国产麻豆午夜三级精品| 久久蜜臀中文字幕| 精品无码三级在线观看视频| 欧美一区2区视频在线观看| 亚洲国产精品综合小说图片区| 色老汉av一区二区三区| 亚洲欧美偷拍三级| 一本一本大道香蕉久在线精品 | 亚洲欧美日本韩国| 91影院在线观看| 亚洲视频综合在线| 色综合久久久久综合体| 伊人色综合久久天天| kk眼镜猥琐国模调教系列一区二区 | 国产色产综合色产在线视频| 韩日欧美一区二区三区| 久久欧美一区二区| 国产成人啪免费观看软件| 久久婷婷综合激情| 国产福利一区在线观看| 中文av一区二区| 91小视频免费观看| 亚洲久草在线视频| 欧美三级在线视频| 久久精品国产免费| 国产三级一区二区| 一本到不卡精品视频在线观看| 亚洲午夜羞羞片| 91精品国产高清一区二区三区| 久久电影网站中文字幕| 久久青草欧美一区二区三区| av在线一区二区三区| 亚洲激情欧美激情| 日韩一卡二卡三卡国产欧美| 国产精品白丝av| 中文字幕亚洲视频| 欧美日韩一区二区三区高清 | 国产成人综合亚洲网站| 国产精品久久久久久久久久久免费看| 一本大道久久a久久精二百|