?? sbgcop.mcmc
字號:
sbgcop.mcmc package:sbgcop R Documentation
_S_e_m_i_p_a_r_a_m_e_t_r_i_c _B_a_y_e_s_i_a_n _G_a_u_s_s_i_a_n _c_o_p_u_l_a _e_s_t_i_m_a_t_i_o_n
_D_e_s_c_r_i_p_t_i_o_n:
'sbgcop.mcmc' is used to semiparametrically estimate the
parameters of a Gaussian copula. It can be used for posterior
inference on the copula parameters, or for imputation of missing
values in matrix-valued data.
_U_s_a_g_e:
sbgcop.mcmc(Y, S0 = diag(dim(Y)[2]), n0 = dim(Y)[2] + 2, nsamp = 100,
odens = max(1, round(nsamp/1000)), seed = 1, verb = TRUE)
_A_r_g_u_m_e_n_t_s:
Y: an n x p matrix. Missing values are allowed.
S0: a p x p positive definite matrix
n0: a positive integer
nsamp: number of iterations of the Markov chain.
odens: output density: number of iterations between saved samples.
seed: an integer for the random seed
verb: print progress of MCMC(TRUE/FALSE)?
_D_e_t_a_i_l_s:
This function produces MCMC samples from the posterior
distribution of a correlation matrix, using a scaled
inverse-Wishart prior distribution and an extended rank
likelihood. It also provides imputation for missing values in a
multivariate dataset.
_V_a_l_u_e:
An object of class 'psgc' containing the following components:
C.psamp : an array of size p x p x 'nsamp/odens', consisting of
posterior samples of the correlation matrix.
Y.pmean : the original datamatrix with imputed values replacing missing
data
LPC : the log-probability of the latent variables at each saved
sample. Used for diagnostic purposes.
_A_u_t_h_o_r(_s):
Peter Hoff
_R_e_f_e_r_e_n_c_e_s:
http://www.stat.washington.edu/hoff/
_E_x_a_m_p_l_e_s:
fit<-sbgcop.mcmc(swiss)
summary(fit)
plot(fit)
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -