?? linux_asm.txt
字號:
一、簡介
作為最基本的編程語言之一,匯編語言雖然應用的范圍不算很廣,但重要性卻勿庸置疑,因為它能夠完成許多其它語言所無法完成的功能。就拿 Linux 內核來講,雖然絕大部分代碼是用 C 語言編寫的,但仍然不可避免地在某些關鍵地方使用了匯編代碼,其中主要是在 Linux 的啟動部分。由于這部分代碼與硬件的關系非常密切,即使是 C 語言也會有些力不從心,而匯編語言則能夠很好揚長避短,最大限度地發揮硬件的性能。
大多數情況下 Linux 程序員不需要使用匯編語言,因為即便是硬件驅動這樣的底層程序在 Linux 操作系統中也可以用完全用 C 語言來實現,再加上 GCC 這一優秀的編譯器目前已經能夠對最終生成的代碼進行很好的優化,的確有足夠的理由讓我們可以暫時將匯編語言拋在一邊了。但實現情況是 Linux 程序員有時還是需要使用匯編,或者不得不使用匯編,理由很簡單:精簡、高效和 libc 無關性。假設要移植 Linux 到某一特定的嵌入式硬件環境下,首先必然面臨如何減少系統大小、提高執行效率等問題,此時或許只有匯編語言能幫上忙了。
匯編語言直接同計算機的底層軟件甚至硬件進行交互,它具有如下一些優點:
能夠直接訪問與硬件相關的存儲器或 I/O 端口;
能夠不受編譯器的限制,對生成的二進制代碼進行完全的控制;
能夠對關鍵代碼進行更準確的控制,避免因線程共同訪問或者硬件設備共享引起的死鎖;
能夠根據特定的應用對代碼做最佳的優化,提高運行速度;
能夠最大限度地發揮硬件的功能。
同時還應該認識到,匯編語言是一種層次非常低的語言,它僅僅高于直接手工編寫二進制的機器指令碼,因此不可避免地存在一些缺點:
編寫的代碼非常難懂,不好維護;
很容易產生 bug,難于調試;
只能針對特定的體系結構和處理器進行優化;
開發效率很低,時間長且單調。
Linux 下用匯編語言編寫的代碼具有兩種不同的形式。第一種是完全的匯編代碼,指的是整個程序全部用匯編語言編寫。盡管是完全的匯編代碼,Linux 平臺下的匯編工具也吸收了 C 語言的長處,使得程序員可以使用 #include、#ifdef 等預處理指令,并能夠通過宏定義來簡化代碼。第二種是內嵌的匯編代碼,指的是可以嵌入到C語言程序中的匯編代碼片段。雖然 ANSI 的 C 語言標準中沒有關于內嵌匯編代碼的相應規定,但各種實際使用的 C 編譯器都做了這方面的擴充,這其中當然就包括 Linux 平臺下的 GCC。
二、Linux 匯編語法格式
絕大多數 Linux 程序員以前只接觸過DOS/Windows 下的匯編語言,這些匯編代碼都是 Intel 風格的。但在 Unix 和 Linux 系統中,更多采用的還是 AT&T 格式,兩者在語法格式上有著很大的不同:
在 AT&T 匯編格式中,寄存器名要加上 '%' 作為前綴;而在 Intel 匯編格式中,寄存器名不需要加前綴。例如:
AT&T 格式 pushl %eax
Intel 格式 push eax
在 AT&T 匯編格式中,用 '$' 前綴表示一個立即操作數;而在 Intel 匯編格式中,立即數的表示不用帶任何前綴。例如:
AT&T 格式 pushl $1
Intel 格式 push 1
AT&T 和 Intel 格式中的源操作數和目標操作數的位置正好相反。在 Intel 匯編格式中,目標操作數在源操作數的左邊;而在 AT&T 匯編格式中,目標操作數在源操作數的右邊。例如:
AT&T 格式 addl $1, %eax
Intel 格式 add eax, 1
在 AT&T 匯編格式中,操作數的字長由操作符的最后一個字母決定,后綴'b'、'w'、'l'分別表示操作數為字節(byte,8 比特)、字(word,16 比特)和長字(long,32比特);而在 Intel 匯編格式中,操作數的字長是用 "byte ptr" 和 "word ptr" 等前綴來表示的。例如:
AT&T 格式
movb val, %al
Intel 格式 mov al, byte ptr val
在 AT&T 匯編格式中,絕對轉移和調用指令(jump/call)的操作數前要加上'*'作為前綴,而在 Intel 格式中則不需要。
遠程轉移指令和遠程子調用指令的操作碼,在 AT&T 匯編格式中為 "ljump" 和 "lcall",而在 Intel 匯編格式中則為 "jmp far" 和 "call far",即:
AT&T 格式 ljump $section, $offset lcall $section, $offset
Intel 格式 jmp far sectionffset call far sectionffset
與之相應的遠程返回指令則為:
AT&T 格式 lret $stack_adjust
Intel 格式 ret far stack_adjust
在 AT&T 匯編格式中,內存操作數的尋址方式是
section:disp(base, index, scale)
而在 Intel 匯編格式中,內存操作數的尋址方式為:
section:[base + index*scale + disp]
由于 Linux 工作在保護模式下,用的是 32 位線性地址,所以在計算地址時不用考慮段基址和偏移量,而是采用如下的地址計算方法:
disp + base + index * scale
下面是一些內存操作數的例子:
AT&T 格式 Intel 格式
movl -4(%ebp), %eax mov eax, [ebp - 4]
movl array(, %eax, 4), %eax mov eax, [eax*4 + array]
movw array(%ebx, %eax, 4), %cx mov cx, [ebx + 4*eax + array]
movb $4, %fs%eax) mov fs:eax, 4
三、Hello World!
真不知道打破這個傳統會帶來什么樣的后果,但既然所有程序設計語言的第一個例子都是在屏幕上打印一個字符串 "Hello World!",那我們也以這種方式來開始介紹 Linux 下的匯編語言程序設計。
在 Linux 操作系統中,你有很多辦法可以實現在屏幕上顯示一個字符串,但最簡潔的方式是使用 Linux 內核提供的系統調用。使用這種方法最大的好處是可以直接和操作系統的內核進行通訊,不需要鏈接諸如 libc 這樣的函數庫,也不需要使用 ELF 解釋器,因而代碼尺寸小且執行速度快。
Linux 是一個運行在保護模式下的 32 位操作系統,采用 flat memory 模式,目前最常用到的是 ELF 格式的二進制代碼。一個 ELF 格式的可執行程序通常劃分為如下幾個部分:.text、.data 和 .bss,其中 .text 是只讀的代碼區,.data 是可讀可寫的數據區,而 .bss 則是可讀可寫且沒有初始化的數據區。代碼區和數據區在 ELF 中統稱為 section,根據實際需要你可以使用其它標準的 section,也可以添加自定義 section,但一個 ELF 可執行程序至少應該有一個 .text 部分。下面給出我們的第一個匯編程序,用的是 AT&T 匯編語言格式:
例1. AT&T 格式
#hello.s
.data # 數據段聲明
msg : .string "Hello, world!\\n" # 要輸出的字符串
len = . - msg # 字串長度
.text # 代碼段聲明
.global _start # 指定入口函數
_start: # 在屏幕上顯示一個字符串
movl $len, %edx # 參數三:字符串長度
movl $msg, %ecx # 參數二:要顯示的字符串
movl $1, %ebx # 參數一:文件描述符(stdout)
movl $4, %eax # 系統調用號(sys_write)
int $0x80 # 調用內核功能
# 退出程序
movl $0,%ebx # 參數一:退出代碼
movl $1,%eax # 系統調用號(sys_exit)
int $0x80 # 調用內核功能
初次接觸到 AT&T 格式的匯編代碼時,很多程序員都認為太晦澀難懂了,沒有關系,在 Linux 平臺上你同樣可以使用 Intel 格式來編寫匯編程序:
例2. Intel 格式
; hello.asm
section .data ; 數據段聲明
msg db "Hello, world!", 0xA ; 要輸出的字符串
len equ $ - msg ; 字串長度
section .text ; 代碼段聲明
global _start ; 指定入口函數
_start: ; 在屏幕上顯示一個字符串
mov edx, len ; 參數三:字符串長度
mov ecx, msg ; 參數二:要顯示的字符串
mov ebx, 1 ; 參數一:文件描述符(stdout)
mov eax, 4 ; 系統調用號(sys_write)
int 0x80 ; 調用內核功能
; 退出程序
mov ebx, 0 ; 參數一:退出代碼
mov eax, 1 ; 系統調用號(sys_exit)
int 0x80 ; 調用內核功能
上面兩個匯編程序采用的語法雖然完全不同,但功能卻都是調用 Linux 內核提供的 sys_write 來顯示一個字符串,然后再調用 sys_exit 退出程序。在 Linux 內核源文件 include/asm-i386/unistd.h 中,可以找到所有系統調用的定義。
四、Linux 匯編工具
Linux 平臺下的匯編工具雖然種類很多,但同 DOS/Windows 一樣,最基本的仍然是匯編器、連接器和調試器。
1.匯編器
匯編器(assembler)的作用是將用匯編語言編寫的源程序轉換成二進制形式的目標代碼。Linux 平臺的標準匯編器是 GAS,它是 GCC 所依賴的后臺匯編工具,通常包含在 binutils 軟件包中。GAS 使用標準的 AT&T 匯編語法,可以用來匯編用 AT&T 格式編寫的程序:
[xiaowp@gary code]$ as -o hello.o hello.s
Linux 平臺上另一個經常用到的匯編器是 NASM,它提供了很好的宏指令功能,并能夠支持相當多的目標代碼格式,包括 bin、a.out、coff、elf、rdf 等。NASM 采用的是人工編寫的語法分析器,因而執行速度要比 GAS 快很多,更重要的是它使用的是 Intel 匯編語法,可以用來編譯用 Intel 語法格式編寫的匯編程序:
[xiaowp@gary code]$ nasm -f elf hello.asm
2.鏈接器
由匯編器產生的目標代碼是不能直接在計算機上運行的,它必須經過鏈接器的處理才能生成可執行代碼。鏈接器通常用來將多個目標代碼連接成一個可執行代碼,這樣可以先將整個程序分成幾個模塊來單獨開發,然后才將它們組合(鏈接)成一個應用程序。 Linux 使用 ld 作為標準的鏈接程序,它同樣也包含在 binutils 軟件包中。匯編程序在成功通過 GAS 或 NASM 的編譯并生成目標代碼后,就可以使用 ld 將其鏈接成可執行程序了:
[xiaowp@gary code]$ ld -s -o hello hello.o
3.調試器
有人說程序不是編出來而是調出來的,足見調試在軟件開發中的重要作用,在用匯編語言編寫程序時尤其如此。Linux 下調試匯編代碼既可以用 GDB、DDD 這類通用的調試器,也可以使用專門用來調試匯編代碼的 ALD(Assembly Language Debugger)。
從調試的角度來看,使用 GAS 的好處是可以在生成的目標代碼中包含符號表(symbol table),這樣就可以使用 GDB 和 DDD 來進行源碼級的調試了。要在生成的可執行程序中包含符號表,可以采用下面的方式進行編譯和鏈接:
[xiaowp@gary code]$ as --gstabs -o hello.o hello.s
[xiaowp@gary code]$ ld -o hello hello.o
執行 as 命令時帶上參數 --gstabs 可以告訴匯編器在生成的目標代碼中加上符號表,同時需要注意的是,在用 ld 命令進行鏈接時不要加上 -s 參數,否則目標代碼中的符號表在鏈接時將被刪去。
在 GDB 和 DDD 中調試匯編代碼和調試 C 語言代碼是一樣的,你可以通過設置斷點來中斷程序的運行,查看變量和寄存器的當前值,并可以對代碼進行單步跟蹤。
圖1 用 DDD 中調試匯編程序
匯編程序員通常面對的都是一些比較苛刻的軟硬件環境,短小精悍的ALD可能更能符合實際的需要,因此下面主要介紹一下如何用ALD來調試匯編程序。首先在命令行方式下執行ald命令來啟動調試器,該命令的參數是將要被調試的可執行程序:
[xiaowp@gary doc]$ ald hello
Assembly Language Debugger 0.1.3
Copyright (C) 2000-2002 Patrick Alken
hello: ELF Intel 80386 (32 bit), LSB, Executable, Version 1 (current)
Loading debugging symbols...(15 symbols loaded)
ald>;
當 ALD 的提示符出現之后,用 disassemble 命令對代碼段進行反匯編:
ald>; disassemble -s .text
Disassembling section .text (0x08048074 - 0x08048096)
08048074 BA0F000000 mov edx, 0xf
08048079 B998900408 mov ecx, 0x8049098
0804807E BB01000000 mov ebx, 0x1
08048083 B804000000 mov eax, 0x4
08048088 CD80 int 0x80
0804808A BB00000000 mov ebx, 0x0
0804808F B801000000 mov eax, 0x1
08048094 CD80 int 0x80
上述輸出信息的第一列是指令對應的地址碼,利用它可以設置在程序執行時的斷點:
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -