亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? main.cpp

?? 遺傳算法的算法編程框架,包括編碼,選擇,交叉,變異等等,可執(zhí)行,并賦有一定的注釋,可以在基于此框架上編寫自己的算法流程
?? CPP
字號:
/***************************************************************/
/* This is a simple genetic algorithm implementation where the */
/* evaluation function takes positive values only and the      */
/* fitness of an individual is the same as the value of the    */
/* objective function                                          */
/***************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* Change any of these parameters to match your needs */

#define POPSIZE 100               /* population size */
#define MAXGENS 500             /* max. number of generations */
#define NVARS 2                 /* no. of problem variables */
#define PXOVER 0.8               /* probability of crossover */
#define PMUTATION 0.001           /* probability of mutation */
#define TRUE 1
#define FALSE 0

int generation;                  /* current generation no. */
int cur_best;                    /* best individual */
FILE *galog;                     /* an output(1) file */
FILE *output;                     /* an output(1) file */

struct genotype /* genotype (GT), a member of the population */
{
	double gene[NVARS];        /* a string of variables */
	double fitness;            /* GT's fitness */
	double upper[NVARS];       /* GT's variables upper bound */
	double lower[NVARS];       /* GT's variables lower bound */
	double rfitness;           /* relative fitness */
	double cfitness;           /* cumulative fitness */
};

struct genotype population[POPSIZE+1];    /* population */
struct genotype newpopulation[POPSIZE+1]; /* new population; */
/* replaces the */
/* old generation */

/* Declaration of procedures used by this genetic algorithm */

void initialize(void);
double randval(double, double);
void evaluate(void);
void keep_the_best(void);
void elitist(void);
void select(void);
void crossover(void);
void Xover(int,int);
void swap(double *, double *);
void mutate(void);
void report(void);

/***************************************************************/
/* Initialization function: Initializes the values of genes    */
/* within the variables bounds. It also initializes (to zero)  */
/* all fitness values for each member of the population. It    */
/* reads upper and lower bounds of each variable from the      */
/* input file `gadata.txt'. It randomly generates values       */
/* between these bounds for each gene of each genotype in the  */
/* population. The format of the input file `gadata.txt' is    */
/* var1_lower_bound var1_upper bound                           */
/* var2_lower_bound var2_upper bound ...                       */
/***************************************************************/

void initialize(void)
{
	FILE *infile;
	int i, j;
	double lbound, ubound;

	if ((infile = fopen("gadata.txt","r"))==NULL)
	{
		fprintf(galog,"\nCannot open input file!\n");
		exit(1);
	}

	remove("output.dat");
	/* initialize variables within the bounds */

	for (i = 0; i < NVARS; i++)
	{
		fscanf(infile, "%lf",&lbound);
		fscanf(infile, "%lf",&ubound);


		for (j = 0; j < POPSIZE; j++)
		{
			population[j].fitness = 0;
			population[j].rfitness = 0;
			population[j].cfitness = 0;
			population[j].lower[i] = lbound;
			population[j].upper[i] = ubound;
			population[j].gene[i]  = randval(population[j].lower[i],
				population[j].upper[i]);
		}
	}

	fclose(infile);
}

/***********************************************************/
/* Random value generator: Generates a value within bounds */
/***********************************************************/

double randval(double low, double high)
{
	double val;
	val = ((double)(rand()%1000)/1000.0)*(high - low) + low;
	return(val);
}

/*************************************************************/
/* Evaluation function: This takes a user defined function.  */
/* Each time this is changed, the code has to be recompiled. */
/* The current function is:  x[1]^2-x[1]*x[2]+x[3]           */
/*************************************************************/

void evaluate(void)
{
	if ((output = fopen("output.dat","a"))==NULL)
	{
		exit(1);
	}
	int mem;
	int i;
	double x[NVARS+1];

	for (mem = 0; mem < POPSIZE; mem++)
	{
		for (i = 0; i < NVARS; i++)
			x[i+1] = population[mem].gene[i];

		population[mem].fitness = x[1]*x[1]+x[2]*x[2];


		if (population[mem].fitness <40 && population[mem].fitness>35)
		{
			fprintf(output, "\n%5d,      %6.9f, %6.9f, %6.9f ", generation, 
				x[1],x[2],population[mem].fitness);
		}

	}
}

/***************************************************************/
/* Keep_the_best function: This function keeps track of the    */
/* best member of the population. Note that the last entry in  */
/* the array Population holds a copy of the best individual    */
/***************************************************************/

void keep_the_best()
{
	int mem;
	int i;
	cur_best = 0; /* stores the index of the best individual */

	for (mem = 0; mem < POPSIZE; mem++)
	{
		if (population[mem].fitness > population[POPSIZE].fitness)
		{
			cur_best = mem;
			population[POPSIZE].fitness = population[mem].fitness;
		}
	}
	/* once the best member in the population is found, copy the genes */
	for (i = 0; i < NVARS; i++)
		population[POPSIZE].gene[i] = population[cur_best].gene[i];
}

/****************************************************************/
/* Elitist function: The best member of the previous generation */
/* is stored as the last in the array. If the best member of    */
/* the current generation is worse then the best member of the  */
/* previous generation, the latter one would replace the worst  */
/* member of the current population                             */
/****************************************************************/

void elitist()
{
	int i;
	double best, worst;             /* best and worst fitness values */
	int best_mem, worst_mem; /* indexes of the best and worst member */

	best = population[0].fitness;
	worst = population[0].fitness;
	for (i = 0; i < POPSIZE - 1; ++i)
	{
		if(population[i].fitness > population[i+1].fitness)
		{      
			if (population[i].fitness >= best)
			{
				best = population[i].fitness;
				best_mem = i;
			}
			if (population[i+1].fitness <= worst)
			{
				worst = population[i+1].fitness;
				worst_mem = i + 1;
			}
		}
		else
		{
			if (population[i].fitness <= worst)
			{
				worst = population[i].fitness;
				worst_mem = i;
			}
			if (population[i+1].fitness >= best)
			{
				best = population[i+1].fitness;
				best_mem = i + 1;
			}
		}
	}
	/* if best individual from the new population is better than */
	/* the best individual from the previous population, then    */
	/* copy the best from the new population; else replace the   */
	/* worst individual from the current population with the     */
	/* best one from the previous generation                     */

	if (best >= population[POPSIZE].fitness)
	{
		for (i = 0; i < NVARS; i++)
			population[POPSIZE].gene[i] = population[best_mem].gene[i];
		population[POPSIZE].fitness = population[best_mem].fitness;
	}
	else
	{
		for (i = 0; i < NVARS; i++)
			population[worst_mem].gene[i] = population[POPSIZE].gene[i];
		population[worst_mem].fitness = population[POPSIZE].fitness;
	} 
}
/**************************************************************/
/* Selection function: Standard proportional selection for    */
/* maximization problems incorporating elitist model - makes  */
/* sure that the best member survives                         */
/**************************************************************/

void select(void)
{
	int mem, i, j, k;
	double sum = 0;
	double p;

	/* find total fitness of the population */
	for (mem = 0; mem < POPSIZE; mem++)
	{
		sum += population[mem].fitness;
	}

	/* calculate relative fitness */
	for (mem = 0; mem < POPSIZE; mem++)
	{
		population[mem].rfitness =  population[mem].fitness/sum;
	}
	population[0].cfitness = population[0].rfitness;

	/* calculate cumulative fitness */
	for (mem = 1; mem < POPSIZE; mem++)
	{
		population[mem].cfitness =  population[mem-1].cfitness +       
			population[mem].rfitness;
	}

	/* finally select survivors using cumulative fitness. */

	for (i = 0; i < POPSIZE; i++)
	{ 
		p = rand()%1000/1000.0;
		if (p < population[0].cfitness)
			newpopulation[i] = population[0];      
		else
		{
			for (j = 0; j < POPSIZE;j++)      
				if (p >= population[j].cfitness && 
					p<population[j+1].cfitness)
					newpopulation[i] = population[j+1];
		}
	}
	/* once a new population is created, copy it back */

	for (i = 0; i < POPSIZE; i++)
		population[i] = newpopulation[i];      
}

/***************************************************************/
/* Crossover selection: selects two parents that take part in  */
/* the crossover. Implements a single point crossover          */
/***************************************************************/

void crossover(void)
{
	int i, mem, one;
	int first  =  0; /* count of the number of members chosen */
	double x;

	for (mem = 0; mem < POPSIZE; ++mem)
	{
		x = rand()%1000/1000.0;
		if (x < PXOVER)
		{
			++first;
			if (first % 2 == 0)
				Xover(one, mem);
			else
				one = mem;
		}
	}
}
/**************************************************************/
/* Crossover: performs crossover of the two selected parents. */
/**************************************************************/

void Xover(int one, int two)
{
	int i;
	int point; /* crossover point */

	/* select crossover point */
	if(NVARS > 1)
	{
		if(NVARS == 2)
			point = 1;
		else
			point = (rand() % (NVARS - 1)) + 1;

		for (i = 0; i < point; i++)
			swap(&population[one].gene[i], &population[two].gene[i]);

	}
}

/*************************************************************/
/* Swap: A swap procedure that helps in swapping 2 variables */
/*************************************************************/

void swap(double *x, double *y)
{
	double temp;

	temp = *x;
	*x = *y;
	*y = temp;

}

/**************************************************************/
/* Mutation: Random uniform mutation. A variable selected for */
/* mutation is replaced by a random value between lower and   */
/* upper bounds of this variable                              */
/**************************************************************/

void mutate(void)
{
	int i, j;
	double lbound, hbound;
	double x;

	for (i = 0; i < POPSIZE; i++)
		for (j = 0; j < NVARS; j++)
		{
			x = rand()%1000/1000.0;
			if (x < PMUTATION)
			{
				/* find the bounds on the variable to be mutated */
				lbound = population[i].lower[j];
				hbound = population[i].upper[j];  
				population[i].gene[j] = randval(lbound, hbound);
			}
		}
}

/***************************************************************/
/* Report function: Reports progress of the simulation. Data   */
/* dumped into the  output file are separated by commas        */
/***************************************************************/

void report(void)
{
	int i;
	double best_val;            /* best population fitness */
	double avg;                 /* avg population fitness */
	double stddev;              /* std. deviation of population fitness */
	double sum_square;          /* sum of square for std. calc */
	double square_sum;          /* square of sum for std. calc */
	double sum;                 /* total population fitness */

	sum = 0.0;
	sum_square = 0.0;

	for (i = 0; i < POPSIZE; i++)
	{
		sum += population[i].fitness;
		sum_square += population[i].fitness * population[i].fitness;
	}

	avg = sum/(double)POPSIZE;
	square_sum = avg * avg * POPSIZE;
	stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1));
	best_val = population[POPSIZE].fitness;

	fprintf(galog, "\n%5d,      %6.9f, %6.9f, %6.9f ", generation, 
		best_val, avg, stddev);
}


/**************************************************************/
/* Main function: Each generation involves selecting the best */
/* members, performing crossover & mutation and then          */
/* evaluating the resulting population, until the terminating */
/* condition is satisfied                                     */
/**************************************************************/

void main(void)
{
	int i;
	if ((galog = fopen("galog.txt","w"))==NULL)
	{
		exit(1);
	}
	generation = 0;

	fprintf(galog, "\n generation  best  average  standard \n");
	fprintf(galog, " number      value fitness  deviation \n");

	initialize();
	evaluate();
	keep_the_best();
	while(generation<MAXGENS)
	{
		generation++;
		select();
		crossover();
		mutate();
		report();
		evaluate();
		elitist();
	}
	fprintf(galog,"\n\n Simulation completed\n");
	fprintf(galog,"\n Best member: \n");

	for (i = 0; i < NVARS; i++)
	{
		fprintf (galog,"\n var(%d) = %3.9f",i,population[POPSIZE].gene[i]);
	}
	fprintf(galog,"\n\n Best fitness = %3.9f",population[POPSIZE].fitness);
	fclose(galog);
	printf("Success\n");
	getchar();
}
/***************************************************************/


?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩国产经典色站一区二区三区 | 91精品婷婷国产综合久久| 国产成人夜色高潮福利影视| 美女网站色91| 免费高清在线一区| 久久精品999| 天天操天天色综合| 亚洲国产精品久久人人爱| 午夜日韩在线电影| 日本三级亚洲精品| 国产一区二区调教| 成人综合激情网| 国产99久久久久| 色综合久久中文综合久久牛| 欧美主播一区二区三区美女| 欧美乱熟臀69xxxxxx| 欧美日韩日本视频| 国产色综合一区| 中文字幕一区免费在线观看| 国产欧美日韩中文久久| 综合电影一区二区三区| 亚洲成人综合网站| 国产自产高清不卡| 色婷婷精品大视频在线蜜桃视频| 欧美视频精品在线观看| 在线不卡免费av| 精品少妇一区二区三区在线播放| 久久五月婷婷丁香社区| 一区在线观看免费| 免费观看91视频大全| 国产精品白丝av| 99精品欧美一区二区三区小说 | 成人污污视频在线观看| 欧美日韩久久不卡| 久久精品无码一区二区三区| 精品国产一区二区国模嫣然| 国产精品美女久久久久久久| 青青草原综合久久大伊人精品优势| 国产麻豆成人精品| 在线不卡免费欧美| 最新不卡av在线| 日韩电影免费在线观看网站| 色哟哟国产精品免费观看| 中文在线一区二区| 九九视频精品免费| 色吧成人激情小说| 最新不卡av在线| av动漫一区二区| 国产日韩精品一区二区三区 | 18欧美亚洲精品| 视频一区在线视频| 91丨porny丨户外露出| 久久久久久久一区| 久久97超碰色| 日韩欧美不卡一区| 免费一区二区视频| 91精品国产一区二区三区| 一区二区三区精品久久久| 在线精品视频一区二区| 一区二区三区国产| 91偷拍与自偷拍精品| 一区二区三区四区在线免费观看| aaa亚洲精品一二三区| 中文字幕一区在线观看| 在线视频国内自拍亚洲视频| 亚洲国产精品久久久男人的天堂| 欧美精品在线一区二区| 亚洲免费观看高清完整版在线 | 久久成人精品无人区| 日本一区二区视频在线观看| 91毛片在线观看| 亚洲国产精品一区二区尤物区| 欧美亚洲自拍偷拍| 国产精品一区二区三区四区| 亚洲另类春色校园小说| 精品久久久久久久人人人人传媒 | 久久av中文字幕片| 99re视频精品| 国产精品毛片久久久久久久 | 国产午夜精品久久| 国产主播一区二区三区| 亚洲精品一二三| 亚洲人成网站色在线观看| 国产欧美一区二区精品仙草咪| 欧美精品一区二区不卡| 色猫猫国产区一区二在线视频| 婷婷久久综合九色综合绿巨人 | 欧美精品黑人性xxxx| 精品一区二区免费在线观看| 亚洲欧洲av在线| 久久美女高清视频| 欧洲色大大久久| 国产精品亚洲专一区二区三区 | 亚洲一区在线观看视频| 国产精品视频九色porn| 欧美日韩视频第一区| 色哟哟一区二区三区| 成人免费av在线| 美国精品在线观看| 偷拍自拍另类欧美| 亚洲国产成人高清精品| 国产精品久久久久永久免费观看 | 精品一区二区在线视频| 天天色综合天天| 喷水一区二区三区| 青草av.久久免费一区| 亚洲一区在线观看视频| 亚洲猫色日本管| 亚洲精品国产一区二区精华液 | 91在线小视频| 欧美在线免费播放| 欧美吞精做爰啪啪高潮| av一二三不卡影片| av在线不卡网| 日韩视频中午一区| 91成人在线精品| 欧美日韩国产另类不卡| 中文成人av在线| 中文文精品字幕一区二区| 国产无人区一区二区三区| 亚洲精品在线观| 国产精品欧美一区二区三区| 亚洲欧洲日韩综合一区二区| 中文字幕色av一区二区三区| 亚洲美女屁股眼交3| 亚洲国产精品久久久久秋霞影院 | 午夜精品在线视频一区| 蜜桃视频免费观看一区| 国产精品18久久久久久久久| gogogo免费视频观看亚洲一| 在线视频国内自拍亚洲视频| 欧美剧在线免费观看网站| 欧美精品一区二区在线观看| 中文字幕在线不卡一区二区三区| 亚洲乱码国产乱码精品精98午夜 | 秋霞影院一区二区| 成人av在线影院| 日韩三级伦理片妻子的秘密按摩| 国产精品国产精品国产专区不蜜| 亚洲精品写真福利| 激情图片小说一区| 91论坛在线播放| 精品国产一区二区三区忘忧草| 中文字幕在线观看一区二区| 日韩成人免费在线| 色狠狠桃花综合| 国产亚洲综合色| 亚洲电影你懂得| 久久久久久夜精品精品免费| 亚洲免费成人av| 国产精品66部| 日韩精品综合一本久道在线视频| 依依成人综合视频| 国产91色综合久久免费分享| 7777女厕盗摄久久久| 亚洲欧美国产毛片在线| 国产精品69毛片高清亚洲| 日韩一区二区三| 亚洲图片欧美一区| 欧美午夜电影一区| 玉米视频成人免费看| 99re6这里只有精品视频在线观看| 欧美亚洲一区三区| 亚洲精品免费在线播放| 成人99免费视频| 看国产成人h片视频| 欧美高清www午色夜在线视频| 亚洲国产视频a| 7777精品伊人久久久大香线蕉经典版下载 | 久99久精品视频免费观看| 欧美一区二区三区免费在线看| 久久精品国产亚洲a| 精品久久久久久久人人人人传媒| 精品一区二区三区视频| 久久麻豆一区二区| 91视频在线看| 亚洲成av人片在线观看无码| 欧美一级一区二区| 国产传媒日韩欧美成人| 亚洲欧洲av一区二区三区久久| 色噜噜狠狠色综合中国| 日韩精品每日更新| 久久久精品蜜桃| 一本色道亚洲精品aⅴ| 美女视频免费一区| 自拍av一区二区三区| 日韩一区二区不卡| 色综合婷婷久久| 免费在线观看一区| 亚洲美腿欧美偷拍| 久久精品在线观看| 欧美日韩国产一二三| 国产高清视频一区| 午夜精品福利一区二区三区蜜桃| 精品国产在天天线2019| 91丨porny丨最新| 成人免费黄色大片| 亚洲码国产岛国毛片在线| 久久久久久久久蜜桃| 3d成人h动漫网站入口|