?? msp430x20x3_usi_09.c
字號:
//******************************************************************************
// MSP430F20xx Demo - I2C Slave Transmitter, single byte
//
// Description: I2C Slave communicates with I2C Master using
// the USI. Slave data is sent and increments from 0x00 with each transmitted
// byte which is verified by the Master.
// LED off for address or data Ack; LED on for address or data NAck.
// ACLK = n/a, MCLK = SMCLK = Calibrated 1MHz
//
// ***THIS IS THE SLAVE CODE***
//
// Slave Master
// (msp430x20x3_usi_06.c)
// MSP430F20x2/3 MSP430F20x2/3
// ----------------- -----------------
// /|\| XIN|- /|\| XIN|-
// | | | | | |
// --|RST XOUT|- --|RST XOUT|-
// | | | |
// LED <-|P1.0 | | |
// | | | P1.0|-> LED
// | SDA/P1.7|------->|P1.6/SDA |
// | SCL/P1.6|<-------|P1.7/SCL |
//
// Note: internal pull-ups are used in this example for SDA & SCL
//
// Z. Albus
// Texas Instruments Inc.
// May 2006
// Built with IAR Embedded Workbench Version: 3.41A
//******************************************************************************
#include <msp430x20x2.h>
char SLV_Data = 0; // Variable for transmitted data
char SLV_Addr = 0x90; // Address is 0x48<<1 for R/W
int I2C_State = 0; // State variable
void main(void)
{
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog
BCSCTL1 = CALBC1_1MHZ; // Set DCO
DCOCTL = CALDCO_1MHZ;
P1OUT = 0xC0; // P1.6 & P1.7 Pullups
P1REN |= 0xC0; // P1.6 & P1.7 Pullups
P1DIR = 0xFF; // Unused pins as outputs
P2OUT = 0;
P2DIR = 0xFF;
USICTL0 = USIPE6+USIPE7+USISWRST; // Port & USI mode setup
USICTL1 = USII2C+USIIE+USISTTIE; // Enable I2C mode & USI interrupts
USICKCTL = USICKPL; // Setup clock polarity
USICNT |= USIIFGCC; // Disable automatic clear control
USICTL0 &= ~USISWRST; // Enable USI
USICTL1 &= ~USIIFG; // Clear pending flag
_EINT();
while(1)
{
LPM0; // CPU off, await USI interrupt
_NOP(); // Used for IAR
}
}
//******************************************************
// USI interrupt service routine
//******************************************************
#pragma vector = USI_VECTOR
__interrupt void USI_TXRX (void)
{
if (USICTL1 & USISTTIFG) // Start entry?
{
P1OUT |= 0x01; // LED on: Sequence start
I2C_State = 2; // Enter 1st state on start
}
switch(__even_in_range(I2C_State,12))
{
case 0: //Idle, should not get here
break;
case 2: //RX Address
USICNT = (USICNT & 0xE0) + 0x08; // Bit counter = 8, RX Address
USICTL1 &= ~USISTTIFG; // Clear start flag
I2C_State = 4; // Go to next state: check address
break;
case 4: // Process Address and send (N)Ack
if (USISRL & 0x01) // If read...
SLV_Addr++; // Save R/W bit
USICTL0 |= USIOE; // SDA = output
if (USISRL == SLV_Addr) // Address match?
{
USISRL = 0x00; // Send Ack
P1OUT &= ~0x01; // LED off
I2C_State = 8; // Go to next state: TX data
}
else
{
USISRL = 0xFF; // Send NAck
P1OUT |= 0x01; // LED on: error
I2C_State = 6; // Go to next state: prep for next Start
}
USICNT |= 0x01; // Bit counter = 1, send (N)Ack bit
break;
case 6: // Prep for Start condition
USICTL0 &= ~USIOE; // SDA = input
SLV_Addr = 0x90; // Reset slave address
I2C_State = 0; // Reset state machine
break;
case 8: // Send Data byte
USICTL0 |= USIOE; // SDA = output
USISRL = SLV_Data; // Send data byte
USICNT |= 0x08; // Bit counter = 8, TX data
I2C_State = 10; // Go to next state: receive (N)Ack
break;
case 10:// Receive Data (N)Ack
USICTL0 &= ~USIOE; // SDA = input
USICNT |= 0x01; // Bit counter = 1, receive (N)Ack
I2C_State = 12; // Go to next state: check (N)Ack
break;
case 12:// Process Data Ack/NAck
if (USISRL & 0x01) // If Nack received...
{
P1OUT |= 0x01; // LED on: error
}
else // Ack received
{
P1OUT &= ~0x01; // LED off
SLV_Data++; // Increment Slave data
}
// Prep for Start condition
USICTL0 &= ~USIOE; // SDA = input
SLV_Addr = 0x90; // Reset slave address
I2C_State = 0; // Reset state machine
break;
}
USICTL1 &= ~USIIFG; // Clear pending flags
}
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -