亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? l_setox.s

?? vxwork源代碼
?? S
?? 第 1 頁 / 共 2 頁
字號:
/* l_setox.s - Motorola 68040 FP exponential routines (LIB) *//* Copyright 1991-1993 Wind River Systems, Inc. */	.data	.globl	_copyright_wind_river	.long	_copyright_wind_river/*modification history--------------------01f,12nov94,dvs  fixed clearcase conversion search/replace errors.01e,21jul93,kdl  added .text (SPR #2372).01d,23aug92,jcf  changed bxxx to jxx.01c,26may92,rrr  the tree shuffle01b,09jan92,kdl  added modification history; general cleanup.01a,15aug91,kdl  original version, from Motorola FPSP v2.0.*//*DESCRIPTION	setoxsa 3.1 12/10/90	The entry point __l_setox computes the exponential of a value.	__l_setoxd does the same except the input value is a denormalized	number.	__l_setoxm1 computes exp(X)-1, and __l_setoxm1d computes	exp(X)-1 for denormalized X.	INPUT	-----	Double-extended value in memory location pointed to by address	register a0.	OUTPUT	------	exp(X) or exp(X)-1 returned in floating-point register fp0.	ACCURACY and MONOTONICITY	-------------------------	The returned result is within 0.85 ulps in 64 significant bit, i.e.	within 0.5001 ulp to 53 bits if the result is subsequently rounded	to double precision. The result is provably monotonic in double	precision.	SPEED	-----	Two timings are measured, both in the copy-back mode. The	first one is measured when the function is invoked the first time	(so the instructions and data are not in cache), and the	second one is measured when the function is reinvoked at the same	input argument.	The program __l_setox takes approximately 210/190 cycles for input	argument X whose magnitude is less than 16380 log2, which	is the usual situation.	For the less common arguments,	depending on their values, the program may run faster or slower --	but no worse than 10 slower even in the extreme cases.	The program __l_setoxm1 takes approximately ???/??? cycles for input	argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes	approximately ???/??? cycles. For the less common arguments,	depending on their values, the program may run faster or slower --	but no worse than 10 slower even in the extreme cases.	ALGORITHM and IMPLEMENTATION NOTES	----------------------------------	__l_setoxd	------	Step 1.	Set ans := 1.0	Step 2.	Return	ans := ans + sign(X)*2^(-126). Exit.	Notes:	This will always generate one exception -- inexact.	__l_setox	-----	Step 1.	Filter out extreme cases of input argument.		1.1	If |X| >= 2^(-65), go to Step 1.3.		1.2	Go to Step 7.		1.3	If |X| < 16380 log(2), go to Step 2.		1.4	Go to Step 8.	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.		 To avoid the use of floating-point comparisons, a		 compact representation of |X| is used. This format is a		 32-bit integer, the upper (more significant) 16 bits are		 the sign and biased exponent field of |X||  the lower 16		 bits are the 16 most significant fraction (including the		 explicit bit) bits of |X|. Consequently, the comparisons		 in Steps 1.1 and 1.3 can be performed by integer comparison.		 Note also that the constant 16380 log(2) used in Step 1.3		 is also in the compact form. Thus taking the branch		 to Step 2 guarantees |X| < 16380 log(2). There is no harm		 to have a small number of cases where |X| is less than,		 but close to, 16380 log(2) and the branch to Step 9 is		 taken.	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).		2.1	Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken)		2.2	N := round-to-nearest-integer( X * 64/log2 ).		2.3	Calculate	J = N mod 64|  so J = 0,1,2,..., or 63.		2.4	Calculate	M = (N - J)/64|  so N = 64M + J.		2.5	Calculate the address of the stored value of 2^(J/64).		2.6	Create the value Scale = 2^M.	Notes:	The calculation in 2.2 is really performed by			Z := X * constant			N := round-to-nearest-integer(Z)		 where			constant := single-precision( 64/log 2 ).		 Using a single-precision constant avoids memory access.		 Another effect of using a single-precision "constant" is		 that the calculated value Z is			Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).		 This error has to be considered later in Steps 3 and 4.	Step 3.	Calculate X - N*log2/64.		3.1	R := X + N*L1, where L1 := single-precision(-log2/64).		3.2	R := R + N*L2, L2 := extended-precision(-log2/64 - L1).	Notes:	a) The way L1 and L2 are chosen ensures L1+L2 approximate		 the value	-log2/64	to 88 bits of accuracy.		 b) N*L1 is exact because N is no longer than 22 bits and		 L1 is no longer than 24 bits.		 c) The calculation X+N*L1 is also exact due to cancellation.		 Thus, R is practically X+N(L1+L2) to full 64 bits.		 d) It is important to estimate how large can |R| be after		 Step 3.2.			N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)			X*64/log2 (1+eps)	=	N + f,	|f| <= 0.5			X*64/log2 - N	=	f - eps*X 64/log2			X - N*log2/64	=	f*log2/64 - eps*X		 Now |X| <= 16446 log2, thus			|X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64					<= 0.57 log2/64.		 This bound will be used in Step 4.	Step 4.	Approximate exp(R)-1 by a polynomial			p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))	Notes:	a) In order to reduce memory access, the coefficients are		 made as "short" as possible: A1 (which is 1/2), A4 and A5		 are single precision|  A2 and A3 are double precision.		 b) Even with the restrictions above,			|p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.		 Note that 0.0062 is slightly bigger than 0.57 log2/64.		 c) To fully utilize the pipeline, p is separated into		 two independent pieces of roughly equal complexities			p = [ R + R*S*(A2 + S*A4) ]	+				[ S*(A1 + S*(A3 + S*A5)) ]		 where S = R*R.	Step 5.	Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by				ans := T + ( T*p + t)		 where T and t are the stored values for 2^(J/64).	Notes:	2^(J/64) is stored as T and t where T+t approximates		 2^(J/64) to roughly 85 bits|  T is in extended precision		 and t is in single precision. Note also that T is rounded		 to 62 bits so that the last two bits of T are zero. The		 reason for such a special form is that T-1, T-2, and T-8		 will all be exact --- a property that will give much		 more accurate computation of the function EXPM1.	Step 6.	Reconstruction of exp(X)			exp(X) = 2^M * 2^(J/64) * exp(R).		6.1	If AdjFlag = 0, go to 6.3		6.2	ans := ans * AdjScale		6.3	Restore the user fpcr		6.4	Return ans := ans * Scale. Exit.	Notes:	If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,		 |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will		 neither overflow nor underflow. If AdjFlag = 1, that		 means that			X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.		 Hence, exp(X) may overflow or underflow or neither.		 When that is the case, AdjScale = 2^(M1) where M1 is		 approximately M. Thus 6.2 will never cause over/underflow.		 Possible exception in 6.4 is overflow or underflow.		 The inexact exception is not generated in 6.4. Although		 one can argue that the inexact flag should always be		 raised, to simulate that exception cost to much than the		 flag is worth in practical uses.	Step 7.	Return 1 + X.		7.1	ans := X		7.2	Restore user fpcr.		7.3	Return ans := 1 + ans. Exit	Notes:	For non-zero X, the inexact exception will always be		 raised by 7.3. That is the only exception raised by 7.3.		 Note also that we use the FMOVEM instruction to move X		 in Step 7.1 to avoid unnecessary trapping. (Although		 the FMOVEM may not seem relevant since X is normalized,		 the precaution will be useful in the library version of		 this code where the separate entry for denormalized inputs		 will be done away with.)	Step 8.	Handle exp(X) where |X| >= 16380log2.		8.1	If |X| > 16480 log2, go to Step 9.		(mimic 2.2 - 2.6)		8.2	N := round-to-integer( X * 64/log2 )		8.3	Calculate J = N mod 64, J = 0,1,...,63		8.4	K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1.		8.5	Calculate the address of the stored value 2^(J/64).		8.6	Create the values Scale = 2^M, AdjScale = 2^M1.		8.7	Go to Step 3.	Notes:	Refer to notes for 2.2 - 2.6.	Step 9.	Handle exp(X), |X| > 16480 log2.		9.1	If X < 0, go to 9.3		9.2	ans := Huge, go to 9.4		9.3	ans := Tiny.		9.4	Restore user fpcr.		9.5	Return ans := ans * ans. Exit.	Notes:	Exp(X) will surely overflow or underflow, depending on		 X's sign. "Huge" and "Tiny" are respectively large/tiny		 extended-precision numbers whose square over/underflow		 with an inexact result. Thus, 9.5 always raises the		 inexact together with either overflow or underflow.	__l_setoxm1d	--------	Step 1.	Set ans := 0	Step 2.	Return	ans := X + ans. Exit.	Notes:	This will return X with the appropriate rounding		 precision prescribed by the user fpcr.	__l_setoxm1	-------	Step 1.	Check |X|		1.1	If |X| >= 1/4, go to Step 1.3.		1.2	Go to Step 7.		1.3	If |X| < 70 log(2), go to Step 2.		1.4	Go to Step 10.	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.		 However, it is conceivable |X| can be small very often		 because EXPM1 is intended to evaluate exp(X)-1 accurately		 when |X| is small. For further details on the comparisons,		 see the notes on Step 1 of __l_setox.	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).		2.1	N := round-to-nearest-integer( X * 64/log2 ).		2.2	Calculate	J = N mod 64|  so J = 0,1,2,..., or 63.		2.3	Calculate	M = (N - J)/64|  so N = 64M + J.		2.4	Calculate the address of the stored value of 2^(J/64).		2.5	Create the values Sc = 2^M and OnebySc := -2^(-M).	Notes:	See the notes on Step 2 of __l_setox.	Step 3.	Calculate X - N*log2/64.		3.1	R := X + N*L1, where L1 := single-precision(-log2/64).		3.2	R := R + N*L2, L2 := extended-precision(-log2/64 - L1).	Notes:	Applying the analysis of Step 3 of __l_setox in this case		 shows that |R| <= 0.0055 (note that |X| <= 70 log2 in		 this case).	Step 4.	Approximate exp(R)-1 by a polynomial			p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6)))))	Notes:	a) In order to reduce memory access, the coefficients are		 made as "short" as possible: A1 (which is 1/2), A5 and A6		 are single precision|  A2, A3 and A4 are double precision.		 b) Even with the restriction above,			|p - (exp(R)-1)| <	|R| * 2^(-72.7)		 for all |R| <= 0.0055.		 c) To fully utilize the pipeline, p is separated into		 two independent pieces of roughly equal complexity			p = [ R*S*(A2 + S*(A4 + S*A6)) ]	+				[ R + S*(A1 + S*(A3 + S*A5)) ]		 where S = R*R.	Step 5.	Compute 2^(J/64)*p by				p := T*p		 where T and t are the stored values for 2^(J/64).	Notes:	2^(J/64) is stored as T and t where T+t approximates		 2^(J/64) to roughly 85 bits|  T is in extended precision		 and t is in single precision. Note also that T is rounded		 to 62 bits so that the last two bits of T are zero. The		 reason for such a special form is that T-1, T-2, and T-8		 will all be exact --- a property that will be exploited		 in Step 6 below. The total relative error in p is no		 bigger than 2^(-67.7) compared to the final result.	Step 6.	Reconstruction of exp(X)-1			exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).		6.1	If M <= 63, go to Step 6.3.		6.2	ans := T + (p + (t + OnebySc)). Go to 6.6		6.3	If M >= -3, go to 6.5.		6.4	ans := (T + (p + t)) + OnebySc. Go to 6.6		6.5	ans := (T + OnebySc) + (p + t).		6.6	Restore user fpcr.		6.7	Return ans := Sc * ans. Exit.	Notes:	The various arrangements of the expressions give accurate		 evaluations.	Step 7.	exp(X)-1 for |X| < 1/4.		7.1	If |X| >= 2^(-65), go to Step 9.		7.2	Go to Step 8.	Step 8.	Calculate exp(X)-1, |X| < 2^(-65).		8.1	If |X| < 2^(-16312), goto 8.3		8.2	Restore fpcr|  return ans := X - 2^(-16382). Exit.		8.3	X := X * 2^(140).		8.4	Restore fpcr|  ans := ans - 2^(-16382).		 Return ans := ans*2^(140). Exit	Notes:	The idea is to return "X - tiny" under the user		 precision and rounding modes. To avoid unnecessary		 inefficiency, we stay away from denormalized numbers the		 best we can. For |X| >= 2^(-16312), the straightforward		 8.2 generates the inexact exception as the case warrants.	Step 9.	Calculate exp(X)-1, |X| < 1/4, by a polynomial			p = X + X*X*(B1 + X*(B2 + |... + X*B12))	Notes:	a) In order to reduce memory access, the coefficients are		 made as "short" as possible: B1 (which is 1/2), B9 to B12		 are single precision|  B3 to B8 are double precision|  and		 B2 is double extended.		 b) Even with the restriction above,			|p - (exp(X)-1)| < |X| 2^(-70.6)		 for all |X| <= 0.251.		 Note that 0.251 is slightly bigger than 1/4.		 c) To fully preserve accuracy, the polynomial is computed		 as	X + ( S*B1 +	Q ) where S = X*X and			Q	=	X*S*(B2 + X*(B3 + |... + X*B12))		 d) To fully utilize the pipeline, Q is separated into		 two independent pieces of roughly equal complexity			Q = [ X*S*(B2 + S*(B4 + |... + S*B12)) ] +				[ S*S*(B3 + S*(B5 + |... + S*B11)) ]	Step 10.	Calculate exp(X)-1 for |X| >= 70 log 2.		10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical		 purposes. Therefore, go to Step 1 of __l_setox.		10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes.		 ans := -1		 Restore user fpcr		 Return ans := ans + 2^(-126). Exit.	Notes:	10.2 will always create an inexact and return -1 + tiny		 in the user rounding precision and mode.		Copyright (C) Motorola, Inc. 1990			All Rights Reserved	THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA	The copyright notice above does not evidence any	actual or intended publication of such source code.__l_setox	IDNT	2,1 Motorola 040 Floating Point Software Package	section	8NOMANUAL*/#include "fpsp040L.h"L2:	.long	0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000EXPA3:	.long	0x3FA55555,0x55554431EXPA2:	.long	0x3FC55555,0x55554018HUGE:	.long	0x7FFE0000,0xFFFFFFFF,0xFFFFFFFF,0x00000000TINY:	.long	0x00010000,0xFFFFFFFF,0xFFFFFFFF,0x00000000EM1A4:	.long	0x3F811111,0x11174385EM1A3:	.long	0x3FA55555,0x55554F5AEM1A2:	.long	0x3FC55555,0x55555555,0x00000000,0x00000000EM1B8:	.long	0x3EC71DE3,0xA5774682EM1B7:	.long	0x3EFA01A0,0x19D7CB68EM1B6:	.long	0x3F2A01A0,0x1A019DF3EM1B5:	.long	0x3F56C16C,0x16C170E2EM1B4:	.long	0x3F811111,0x11111111EM1B3:	.long	0x3FA55555,0x55555555EM1B2:	.long	0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB	.long	0x00000000TWO140:	.long	0x48B00000,0x00000000TWON140:	.long	0x37300000,0x00000000EXPTBL:	.long	0x3FFF0000,0x80000000,0x00000000,0x00000000	.long	0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B	.long	0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9	.long	0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369	.long	0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C	.long	0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F	.long	0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729	.long	0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF	.long	0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF	.long	0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA	.long	0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051	.long	0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029	.long	0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494	.long	0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0	.long	0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D	.long	0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537	.long	0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD	.long	0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087	.long	0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818	.long	0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D	.long	0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890	.long	0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C	.long	0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05	.long	0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126	.long	0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140	.long	0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA	.long	0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A	.long	0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC	.long	0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC	.long	0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610	.long	0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90	.long	0x3FFF0000,0xB311C412,0xA9112488,0x201F678A	.long	0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13	.long	0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30	.long	0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC	.long	0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6	.long	0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70	.long	0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518	.long	0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41	.long	0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B	.long	0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568	.long	0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E	.long	0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03	.long	0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D	.long	0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4	.long	0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C	.long	0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9	.long	0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21	.long	0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F	.long	0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F	.long	0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
蓝色福利精品导航| 亚洲国产激情av| 国产激情一区二区三区| ...av二区三区久久精品| 欧美伊人久久大香线蕉综合69| 蜜桃av一区二区| 欧美精品丝袜中出| 成人午夜在线视频| 婷婷激情综合网| 成人欧美一区二区三区小说| 欧美电视剧免费观看| 在线观看日韩电影| 成人va在线观看| 国精产品一区一区三区mba桃花| 一区二区视频在线看| 国产欧美综合在线观看第十页| 欧美精品一级二级三级| 色综合天天性综合| 国产成人在线影院 | 成人性生交大合| 欧美aaaaaa午夜精品| 亚洲麻豆国产自偷在线| 中日韩免费视频中文字幕| 日韩欧美在线不卡| 欧美日韩高清一区二区| 91丨九色丨蝌蚪富婆spa| 国产精品18久久久久久久久| 麻豆精品视频在线观看免费| 亚洲成在人线免费| 欧美日韩卡一卡二| 色婷婷综合激情| 91香蕉视频污| 一本久久a久久精品亚洲 | 色综合av在线| 97久久精品人人爽人人爽蜜臀| 国产福利一区二区三区视频 | 91猫先生在线| 不卡视频免费播放| 国产精品1区2区| 国产精品资源站在线| 国产精品一区二区在线看| 九九在线精品视频| 精品亚洲国产成人av制服丝袜| 日韩成人一级片| 美腿丝袜亚洲三区| 免播放器亚洲一区| 久久精品国产第一区二区三区| 免费成人美女在线观看.| 久久一区二区三区国产精品| 精品国产精品网麻豆系列| 3atv在线一区二区三区| 欧美一区二区三区性视频| 日韩一级欧美一级| 欧美一区二区久久久| 日韩一区二区视频| 久久免费国产精品| 国产精品嫩草影院av蜜臀| 国产精品久久久久久久久免费樱桃| 国产精品久久久久国产精品日日| 自拍av一区二区三区| 欧美一区二区不卡视频| 91精品国产综合久久久蜜臀粉嫩| 69成人精品免费视频| 制服丝袜国产精品| 久久青草国产手机看片福利盒子 | 免费成人深夜小野草| 国产精品99久久久久久久vr| 不卡的电影网站| 色婷婷av一区二区三区软件| 麻豆91在线播放免费| 国产精品66部| 在线影视一区二区三区| 欧美精品123区| 精品日韩欧美在线| 国产精品美女久久久久久久久| 亚洲一级在线观看| 麻豆国产精品视频| 成人的网站免费观看| 欧美色视频在线| 26uuu国产电影一区二区| 国产精品国产三级国产普通话蜜臀 | 99精品视频在线观看| 欧美精品aⅴ在线视频| 精品国产免费视频| 亚洲另类中文字| 韩国av一区二区三区在线观看| 成人的网站免费观看| 欧美精品久久一区| 国产欧美1区2区3区| 午夜精品久久久久久| 成人的网站免费观看| 日韩午夜激情av| 亚洲免费观看高清完整版在线观看 | 韩国v欧美v日本v亚洲v| 99精品视频在线观看免费| 日韩欧美视频一区| 日韩理论电影院| 亚洲成年人网站在线观看| 狠狠色丁香久久婷婷综合_中| 91蜜桃免费观看视频| 日韩精品一区二区三区四区视频 | 亚洲国产成人91porn| 国产成人免费av在线| 欧美日韩中文另类| 91国产成人在线| 亚洲国产精品精华液ab| 奇米影视7777精品一区二区| 91网页版在线| 久久久不卡网国产精品二区| 久久精品一区蜜桃臀影院| 亚洲午夜免费电影| 成人不卡免费av| 久久精品视频在线看| 日韩av电影天堂| proumb性欧美在线观看| 国产午夜精品一区二区三区嫩草 | 国产成人啪午夜精品网站男同| 久久99精品久久久久久国产越南 | 色视频成人在线观看免| 国产三级三级三级精品8ⅰ区| 蜜臀a∨国产成人精品| 欧美日韩小视频| 亚洲免费观看高清在线观看| www.欧美亚洲| 国产欧美日产一区| 中日韩免费视频中文字幕| 国产真实乱对白精彩久久| 欧美日韩一本到| 偷窥国产亚洲免费视频| 欧美在线综合视频| 一区二区三区精品在线观看| 99精品1区2区| 国产精品美女久久久久久久久| 久久精品噜噜噜成人88aⅴ| 3751色影院一区二区三区| 天天综合天天做天天综合| 欧美日韩国产一二三| 亚洲高清视频的网址| 欧美色欧美亚洲另类二区| 亚洲一区二区三区国产| 欧美色精品在线视频| 天天操天天干天天综合网| 欧美日韩国产片| 日韩不卡一二三区| 欧美一区二区成人| 国产自产高清不卡| 欧美韩国日本一区| 99久久精品费精品国产一区二区| 中文字幕一区二区三区精华液 | 视频一区视频二区中文字幕| 欧美三级电影网站| 视频一区二区三区中文字幕| 欧美美女网站色| 蜜桃av一区二区三区| 国产欧美日韩在线看| www.日韩av| 午夜精品一区二区三区电影天堂 | 欧美韩日一区二区三区四区| 成人黄色片在线观看| 亚洲男同1069视频| 欧美剧情片在线观看| 久草在线在线精品观看| 国产欧美日韩麻豆91| 不卡一区二区在线| 一级女性全黄久久生活片免费| 欧美人成免费网站| 国内一区二区在线| 亚洲欧美一区二区在线观看| 欧美日韩激情在线| 国产精品中文字幕一区二区三区| 国产精品乱人伦一区二区| 日本韩国一区二区| 日本视频一区二区三区| 国产午夜精品美女毛片视频| 色94色欧美sute亚洲线路一ni| 日本女优在线视频一区二区| 2020国产精品| 在线视频观看一区| 国产精品美女久久福利网站| 欧美色图一区二区三区| 久久99国产精品麻豆| 成人免费在线观看入口| 欧美一区二区视频在线观看2020| 大陆成人av片| 久久久久97国产精华液好用吗| 91色婷婷久久久久合中文| 人人狠狠综合久久亚洲| 国产精品久久久久久久久免费丝袜| 欧美理论在线播放| 成人午夜av影视| 蜜桃久久久久久久| 亚洲一级二级在线| 日本一区二区三区四区| 91精品综合久久久久久| 成人丝袜高跟foot| 婷婷丁香久久五月婷婷| 自拍偷拍国产精品| 久久久99久久| 日韩女优毛片在线| 欧美伊人久久久久久午夜久久久久|