亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? jidctint.c

?? 這是JPEG解碼、編碼的源代碼
?? C
字號:
/*
 * jidctint.c
 *
 * Copyright (C) 1991-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains a slow-but-accurate integer implementation of the
 * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
 * must also perform dequantization of the input coefficients.
 *
 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
 * on each row (or vice versa, but it's more convenient to emit a row at
 * a time).  Direct algorithms are also available, but they are much more
 * complex and seem not to be any faster when reduced to code.
 *
 * This implementation is based on an algorithm described in
 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
 * The primary algorithm described there uses 11 multiplies and 29 adds.
 * We use their alternate method with 12 multiplies and 32 adds.
 * The advantage of this method is that no data path contains more than one
 * multiplication; this allows a very simple and accurate implementation in
 * scaled fixed-point arithmetic, with a minimal number of shifts.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h"		/* Private declarations for DCT subsystem */

#ifdef DCT_ISLOW_SUPPORTED


/*
 * This module is specialized to the case DCTSIZE = 8.
 */

#if DCTSIZE != 8
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif


/*
 * The poop on this scaling stuff is as follows:
 *
 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
 * larger than the true IDCT outputs.  The final outputs are therefore
 * a factor of N larger than desired; since N=8 this can be cured by
 * a simple right shift at the end of the algorithm.  The advantage of
 * this arrangement is that we save two multiplications per 1-D IDCT,
 * because the y0 and y4 inputs need not be divided by sqrt(N).
 *
 * We have to do addition and subtraction of the integer inputs, which
 * is no problem, and multiplication by fractional constants, which is
 * a problem to do in integer arithmetic.  We multiply all the constants
 * by CONST_SCALE and convert them to integer constants (thus retaining
 * CONST_BITS bits of precision in the constants).  After doing a
 * multiplication we have to divide the product by CONST_SCALE, with proper
 * rounding, to produce the correct output.  This division can be done
 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
 * as long as possible so that partial sums can be added together with
 * full fractional precision.
 *
 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
 * they are represented to better-than-integral precision.  These outputs
 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
 * with the recommended scaling.  (To scale up 12-bit sample data further, an
 * intermediate INT32 array would be needed.)
 *
 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
 * shows that the values given below are the most effective.
 */

#if BITS_IN_JSAMPLE == 8
#define CONST_BITS  13
#define PASS1_BITS  2
#else
#define CONST_BITS  13
#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
#endif

/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
 * causing a lot of useless floating-point operations at run time.
 * To get around this we use the following pre-calculated constants.
 * If you change CONST_BITS you may want to add appropriate values.
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
 */

#if CONST_BITS == 13
#define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
#define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
#define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
#define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
#define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
#define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
#define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
#define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
#else
#define FIX_0_298631336  FIX(0.298631336)
#define FIX_0_390180644  FIX(0.390180644)
#define FIX_0_541196100  FIX(0.541196100)
#define FIX_0_765366865  FIX(0.765366865)
#define FIX_0_899976223  FIX(0.899976223)
#define FIX_1_175875602  FIX(1.175875602)
#define FIX_1_501321110  FIX(1.501321110)
#define FIX_1_847759065  FIX(1.847759065)
#define FIX_1_961570560  FIX(1.961570560)
#define FIX_2_053119869  FIX(2.053119869)
#define FIX_2_562915447  FIX(2.562915447)
#define FIX_3_072711026  FIX(3.072711026)
#endif


/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
 * For 8-bit samples with the recommended scaling, all the variable
 * and constant values involved are no more than 16 bits wide, so a
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
 * For 12-bit samples, a full 32-bit multiplication will be needed.
 */

#if BITS_IN_JSAMPLE == 8
#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const)  ((var) * (const))
#endif


/* Dequantize a coefficient by multiplying it by the multiplier-table
 * entry; produce an int result.  In this module, both inputs and result
 * are 16 bits or less, so either int or short multiply will work.
 */

#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))


/*
 * Perform dequantization and inverse DCT on one block of coefficients.
 */

GLOBAL(void)
jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
		 JCOEFPTR coef_block,
		 JSAMPARRAY output_buf, JDIMENSION output_col)
{
  INT32 tmp0, tmp1, tmp2, tmp3;
  INT32 tmp10, tmp11, tmp12, tmp13;
  INT32 z1, z2, z3, z4, z5;
  JCOEFPTR inptr;
  ISLOW_MULT_TYPE * quantptr;
  int * wsptr;
  JSAMPROW outptr;
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  int ctr;
  int workspace[DCTSIZE2];	/* buffers data between passes */
  SHIFT_TEMPS

  /* Pass 1: process columns from input, store into work array. */
  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
  /* furthermore, we scale the results by 2**PASS1_BITS. */

  inptr = coef_block;
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  wsptr = workspace;
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
    /* Due to quantization, we will usually find that many of the input
     * coefficients are zero, especially the AC terms.  We can exploit this
     * by short-circuiting the IDCT calculation for any column in which all
     * the AC terms are zero.  In that case each output is equal to the
     * DC coefficient (with scale factor as needed).
     * With typical images and quantization tables, half or more of the
     * column DCT calculations can be simplified this way.
     */
    
    if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
	 inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] |
	 inptr[DCTSIZE*7]) == 0) {
      /* AC terms all zero */
      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
      
      wsptr[DCTSIZE*0] = dcval;
      wsptr[DCTSIZE*1] = dcval;
      wsptr[DCTSIZE*2] = dcval;
      wsptr[DCTSIZE*3] = dcval;
      wsptr[DCTSIZE*4] = dcval;
      wsptr[DCTSIZE*5] = dcval;
      wsptr[DCTSIZE*6] = dcval;
      wsptr[DCTSIZE*7] = dcval;
      
      inptr++;			/* advance pointers to next column */
      quantptr++;
      wsptr++;
      continue;
    }
    
    /* Even part: reverse the even part of the forward DCT. */
    /* The rotator is sqrt(2)*c(-6). */
    
    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
    
    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
    
    z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);

    tmp0 = (z2 + z3) << CONST_BITS;
    tmp1 = (z2 - z3) << CONST_BITS;
    
    tmp10 = tmp0 + tmp3;
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;
    
    /* Odd part per figure 8; the matrix is unitary and hence its
     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
     */
    
    tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    
    z1 = tmp0 + tmp3;
    z2 = tmp1 + tmp2;
    z3 = tmp0 + tmp2;
    z4 = tmp1 + tmp3;
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    
    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    
    z3 += z5;
    z4 += z5;
    
    tmp0 += z1 + z3;
    tmp1 += z2 + z4;
    tmp2 += z2 + z3;
    tmp3 += z1 + z4;
    
    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
    
    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
    
    inptr++;			/* advance pointers to next column */
    quantptr++;
    wsptr++;
  }
  
  /* Pass 2: process rows from work array, store into output array. */
  /* Note that we must descale the results by a factor of 8 == 2**3, */
  /* and also undo the PASS1_BITS scaling. */

  wsptr = workspace;
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
    outptr = output_buf[ctr] + output_col;
    /* Rows of zeroes can be exploited in the same way as we did with columns.
     * However, the column calculation has created many nonzero AC terms, so
     * the simplification applies less often (typically 5% to 10% of the time).
     * On machines with very fast multiplication, it's possible that the
     * test takes more time than it's worth.  In that case this section
     * may be commented out.
     */
    
#ifndef NO_ZERO_ROW_TEST
    if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[4] | wsptr[5] | wsptr[6] |
	 wsptr[7]) == 0) {
      /* AC terms all zero */
      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
				  & RANGE_MASK];
      
      outptr[0] = dcval;
      outptr[1] = dcval;
      outptr[2] = dcval;
      outptr[3] = dcval;
      outptr[4] = dcval;
      outptr[5] = dcval;
      outptr[6] = dcval;
      outptr[7] = dcval;

      wsptr += DCTSIZE;		/* advance pointer to next row */
      continue;
    }
#endif
    
    /* Even part: reverse the even part of the forward DCT. */
    /* The rotator is sqrt(2)*c(-6). */
    
    z2 = (INT32) wsptr[2];
    z3 = (INT32) wsptr[6];
    
    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
    
    tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
    tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
    
    tmp10 = tmp0 + tmp3;
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;
    
    /* Odd part per figure 8; the matrix is unitary and hence its
     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
     */
    
    tmp0 = (INT32) wsptr[7];
    tmp1 = (INT32) wsptr[5];
    tmp2 = (INT32) wsptr[3];
    tmp3 = (INT32) wsptr[1];
    
    z1 = tmp0 + tmp3;
    z2 = tmp1 + tmp2;
    z3 = tmp0 + tmp2;
    z4 = tmp1 + tmp3;
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    
    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    
    z3 += z5;
    z4 += z5;
    
    tmp0 += z1 + z3;
    tmp1 += z2 + z4;
    tmp2 += z2 + z3;
    tmp3 += z1 + z4;
    
    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
    
    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    
    wsptr += DCTSIZE;		/* advance pointer to next row */
  }
}

#endif /* DCT_ISLOW_SUPPORTED */

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品久久久久久久久久免费看| 成人av免费在线观看| 一区二区三区四区蜜桃| 久久久99免费| 欧美国产成人精品| 国产精品嫩草影院com| 中文字幕在线观看一区| 日韩伦理电影网| 一区二区三区.www| 午夜精品国产更新| 日本一不卡视频| 美女精品自拍一二三四| 国内久久婷婷综合| 成人一二三区视频| 色婷婷久久久久swag精品| 欧美三区免费完整视频在线观看| 欧美日韩亚洲综合| 精品日产卡一卡二卡麻豆| 精品va天堂亚洲国产| 中文字幕成人网| 亚洲国产日日夜夜| 九九久久精品视频| av电影在线不卡| 精品视频色一区| 久久夜色精品国产噜噜av| 国产精品久久久久影视| 亚洲成人av免费| 国产一区二区三区在线观看免费视频 | 免费成人在线播放| 高清国产午夜精品久久久久久| 91婷婷韩国欧美一区二区| 欧美精选一区二区| 国产亚洲精久久久久久| 一区二区三区在线观看动漫| 青青草原综合久久大伊人精品| 国产一区二区在线视频| 色美美综合视频| 久久久国际精品| 天堂久久久久va久久久久| 国产精品一区二区久久精品爱涩| 91麻豆免费观看| 精品福利二区三区| 亚洲一区二区三区视频在线播放 | 国产精品第五页| 久久国产福利国产秒拍| 欧洲亚洲精品在线| 日本一区二区成人在线| 日韩中文字幕1| 91日韩在线专区| 欧美国产日韩亚洲一区| 免费人成在线不卡| 欧美这里有精品| 亚洲视频免费观看| 国产成人啪午夜精品网站男同| 欧美男生操女生| 一区二区三区高清不卡| 成人黄色av电影| 久久九九99视频| 国内精品自线一区二区三区视频| 欧美电影影音先锋| 艳妇臀荡乳欲伦亚洲一区| 成人av电影在线播放| 久久亚洲精品小早川怜子| 青娱乐精品在线视频| 欧美日韩一区国产| 亚洲精品中文字幕乱码三区| 成人av高清在线| 综合久久久久久久| 91香蕉视频污| 亚洲乱码国产乱码精品精98午夜 | 欧美日韩午夜在线| 亚洲综合色区另类av| 一本久久综合亚洲鲁鲁五月天| 国产精品久久777777| 国产.欧美.日韩| 国产精品国模大尺度视频| 国产91色综合久久免费分享| 国产欧美精品一区二区色综合| 国内成+人亚洲+欧美+综合在线| 日韩午夜在线观看视频| 秋霞电影一区二区| 久久精品网站免费观看| 国产乱码精品1区2区3区| 久久免费的精品国产v∧| 高清不卡在线观看av| 国产精品丝袜久久久久久app| 丰满岳乱妇一区二区三区| 国产欧美一区二区精品仙草咪| 国产suv精品一区二区三区| 欧美激情一二三区| 在线这里只有精品| 日本不卡一区二区三区| 2014亚洲片线观看视频免费| 国产成a人亚洲精品| 亚洲狠狠丁香婷婷综合久久久| 欧美军同video69gay| 裸体健美xxxx欧美裸体表演| 国产亚洲精品超碰| 91免费版在线| 麻豆视频观看网址久久| 欧美国产禁国产网站cc| 欧美三区在线观看| 狠狠色综合色综合网络| 日韩毛片一二三区| 日韩欧美第一区| 99久精品国产| 久久9热精品视频| 亚洲人xxxx| 日韩美女视频在线| 91麻豆福利精品推荐| 日本大胆欧美人术艺术动态| 国产精品乱码久久久久久 | 麻豆成人久久精品二区三区红| 日本一区二区免费在线| 欧美日韩免费电影| 国产一区二区精品久久| 亚洲资源中文字幕| 日本一区二区视频在线观看| 欧美日韩久久不卡| 91小视频在线| 国产91露脸合集magnet| 日本亚洲最大的色成网站www| 中文字幕在线不卡视频| 国产亚洲成av人在线观看导航| 欧美影片第一页| 99视频精品免费视频| 久久99国产精品麻豆| 亚洲最新视频在线观看| 国产精品成人免费| 国产亚洲欧美激情| 欧美电影精品一区二区| 欧美日免费三级在线| youjizz国产精品| 国产激情一区二区三区| 久久综合综合久久综合| 午夜电影一区二区| 亚洲一区二区在线免费看| 中文字幕亚洲电影| 国产精品丝袜一区| 国产欧美va欧美不卡在线| 日韩精品最新网址| 欧美va亚洲va国产综合| 欧美电影影音先锋| 91精品国产色综合久久不卡电影| 色乱码一区二区三区88| 91亚洲永久精品| 99re亚洲国产精品| caoporn国产一区二区| 国产电影精品久久禁18| 国产成人aaaa| 99热精品国产| 99r精品视频| 一本到高清视频免费精品| 色婷婷综合久久久| 欧美唯美清纯偷拍| 在线视频你懂得一区二区三区| 在线观看成人免费视频| 欧美吞精做爰啪啪高潮| 91精品国产欧美一区二区| 日韩一级完整毛片| 久久婷婷一区二区三区| 国产女人18水真多18精品一级做| 国产精品日韩精品欧美在线| 国产精品日韩成人| 亚洲一区二区三区在线看| 视频一区在线视频| 国产乱码精品一区二区三区av | 成人美女视频在线观看| 成人av电影在线网| 精品视频一区 二区 三区| 91精品国产综合久久精品性色 | 成人午夜免费av| 色综合天天综合给合国产| 欧美日韩国产综合视频在线观看 | 午夜不卡av免费| 美日韩一区二区三区| 国产精品一区二区91| 91猫先生在线| 91麻豆精品久久久久蜜臀| 久久夜色精品国产噜噜av| 亚洲猫色日本管| 免费日本视频一区| 波多野结衣在线一区| 欧美性受极品xxxx喷水| 日韩久久免费av| 亚洲美女免费在线| 九九九久久久精品| 色婷婷狠狠综合| 精品日韩一区二区三区| 一区二区三区日韩欧美精品| 蜜桃精品视频在线| 欧美亚洲禁片免费| 国产欧美一区二区精品秋霞影院| 亚洲黄色av一区| 国产xxx精品视频大全| 欧美一区二区三区爱爱| 国产精品短视频| 国产精品香蕉一区二区三区| 欧美午夜精品免费| 国产精品久久久久久久久免费丝袜 |