亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? sift.tex

?? SIFT代碼
?? TEX
?? 第 1 頁 / 共 2 頁
字號:
% file:        sift.tex% author:      Andrea Vedaldi% description: SIFT code manual% AUTORIGHTS\documentclass{article}\usepackage{visionlab,xspace,tabularx}\usepackage[margin=2cm]{geometry}\usepackage{graphics}\usepackage[usenames]{color}%\usepackage{showkeys}\usepackage{hyperref}\newcommand{\x}{\mathbf{x}}\title{An implementation of SIFT detector and descriptor}\author{Andrea Vedaldi\\ University of California -- VisionLab}\date{}\definecolor{codecolor}{rgb}{0.1,0.8,0.0} \newcommand{\Matlab}{{\sc Matlab}\xspace}\let\oldtt=\tt\renewcommand{\tt}{\oldtt\color{codecolor}}\begin{document}\maketitle{}% this will add all LaTeX labels as PDF destinations% Used in combination with Hyperref, needs to be after \begin{document}\let\oldlabel=\label\renewcommand{\label}[1]{%{\pdfdest name {#1} fitbh}% xyz\oldlabel{#1}%}\tableofcontents{}% ------------------------------------------------------------------------------\section{Introduction}\label{sift.introduction}% ------------------------------------------------------------------------------These notes describe an implementation of the Scale-Invariant Transform Feature (SIFT) interest point detector and descriptor \cite{lowe04distinctive}. This implementation is designed to produce results close to Lowe's original implementation.\footnote{See {\tt http://www.cs.ubc.ca/\~ lowe/keypoints/}} The SIFT detector and descriptor are discussed in some depth in the paper  \cite{lowe04distinctive}. Here we describe the interface to our implementation and, in the appendix, some technical details.% ------------------------------------------------------------------------------ \section{User reference: the {\tt sift} function}\label{sift.user}% ------------------------------------------------------------------------------The SIFT detector and the SIFT descriptor are invoked by means of the function {\tt sift}, which provides a unified interface to both.\begin{example}[Invocation]The following lines run the SIFT detector and descriptor on the image {\tt data/test.jpg}.\begin{verbatim}  I = imread('data/test.png') ;  I = double(rgb2gray(I)/256) ;  [frames,descriptors] = sift(I, 'Verbosity', 1) ;\end{verbatim}The pair option-value \verb$'Verbosity',1$ causes the function to print a detailed progress report.\end{example}The {\tt sift} function returns a $4\times K$ matrix {\tt frames} containing the SIFT frames and a $128 \times K$ matrix {\tt descriptors} containing their descriptors. Each frame is characterized by four numbers which are in order $(x_1,x_2)$ for the center of the frame, $\sigma$ for its scale and $\theta$ for its orientation. The coordinates $(x_1,x_2)$ are relative to the upper-left corner of the image, which is assigned coordinates $(0,0)$, and may be fractional numbers (sub-pixel precision). The scale $\sigma$ is the smoothing level at which the frame has been detected. This number can also be interpreted as size of the frame, which is usually visualized as a disk of radius $6\sigma$. Each descriptor is a vector describing coarsely the appearance of the image patch corresponding to the frame (further details are discussed in Appendix~\ref{sift.internals.descriptor}). Typically this vector has dimension 128, but this number can be changed by the user as described later.Once frames and descriptors of two images $I_1$ and $I_2$ have been computed, {\tt siftmatch} can be used to estimate the pairs of matching features. This function uses Lowe's method to discard ambiguous matches~\cite{lowe04distinctive}. The result is a $2\times M$ matrix,  each column of which is a pair $(k_1,k_2)$ of indices of corresponding SIFT frames.\begin{example}[Matching]Let us assume that the images {\tt I1} and {\tt I2} have been loaded and processed as in the previous example. The code\begin{verbatim}  matches = siftmatch(descriptors1, descriptors2) ;\end{verbatim}stores in {\tt matches} the matching pairs, one per column.\end{example}The package provides some ancillary functions; you can\begin{itemize}\item use {\tt plotsiftframe} to plot SIFT frames;\item use {\tt plotsiftdescriptor} to plot SIFT descriptors;\item use {\tt plotmatches} to plot feature matches;\item use {\tt siftread} to read files produced by Lowe's implementation.\end{itemize}\begin{example}[Visualization]Let {\tt I1}, {\tt I2} and {\tt matches} be as in the previous example. To visualize the matches issue\begin{verbatim}  plotsiftmatches(I1,I2,frames1,frames2,matches)\end{verbatim}\end{example}The {\tt sift} function has many parameters. The default values have been chosen to emulate Lowe's original implementation. Although our code does not result in frames and descriptors that are 100\% equivalent, in general they are quite similar.% ------------------------------------------------------------------------------ \subsection{Scale space parameters}\label{sift.user.ss}% ------------------------------------------------------------------------------ The SIFT detector and descriptor are constructed from the {\em Gaussian scale space} of the source image $I(x)$. The Gaussian scale space is the function\[   G(x;\sigma) \defeq (g_\sigma*I)(x)\]where $g_\sigma$ is an isotropic Gaussian kernel of variance $\sigma^2 I$, $x$ is the spatial coordinate and $\sigma$ is the scale coordinate. The algorithm make use of another scale space too, called {\em difference of Gaussian (DOG)}, which is, coarsely speaking, the scale derivative of the Gaussian scale space. Since the scale space $G(x;\sigma)$ represents the same information (the image $I(x)$) at different levels of scale, it is sampled in a particular way to reduce redundancy. The domain of the variable $\sigma$ is discretized in logarithmic steps arranged in $O$ octaves. Each octave is further subdivided in $S$ sub-levels. The distinction between octave and sub-level is important because at each successive octave the data is spatially downsampled by half. Octaves and sub-levels are identified by a discrete {\em octave index} $o$ and {\em sub-level index} $s$ respectively. The octave index $o$ and the sub-level index $s$  are mapped to the corresponding scale $\sigma$ by the formula\be\label{eq:scale}  \sigma(o,s) = \sigma_0 2^{o+s/S},  \quad o \in o_{\min} + [0, ..., O-1],  \quad s \in [0,...,S-1]\eewhere $\sigma_0$ is the base scale level.The {\tt sift} function accepts the following parameters describing the Gaussian scale space being used:\begin{itemize}\item {\tt NumOctaves}. This is the number of octaves $O$ in \eqref{eq:scale}.\item {\tt FirstOctave}. Index of the first octave $o_{\min}$: the octave index $o$ varies in  $o_{\min},...,o_{\min}+O-1$. It is usually either $0$ or $-1$. Setting $o_{\min}$ to $-1$ has the effect of doubling the image before computing the Gaussian scale space.\item {\tt NumLevels}. This is the number of sub-levels $S$ in \eqref{eq:scale}.\item {\tt Sigma0}. Base smoothing: This is the parameter $\sigma_0$ in \eqref{eq:scale}.\item {\tt SigmaN}. Nominal pre-smoothing: This is the nominal smoothing level of the input image. The algorithm assumes that the input image is actually $(g_{\sigma_n}*I)(x)$ as opposed to $I(x)$ and adjusts the computations according. Usually $\sigma_n$ is assumed to be half pixel (0.5).\end{itemize}% ------------------------------------------------------------------------------ \subsection{Detector parameters}\label{sift.user.detector}% ------------------------------------------------------------------------------ The SIFT frames $(x,\sigma)$ are points of local extremum of the DOG scale space. The selection of such points is controlled by the following parameters:\begin{itemize}\item {\tt Threshold}. Local extrema threshold. Local extrema whose value $|G(x,;\sigma)|$ is below this number are rejected.\item {\tt EdgeThreshold}. Local extrema localization threshold. If the local extremum is on a valley, the algorithm discards it as it is too unstable. Extrema are associated with a score proportional to their sharpness and rejected if the score is below this threshold.\item {\tt RemoveBoundaryPoints}. Boundary points removal. If this parameter is set to 1 (true), frames which are too close to the boundary of the image are rejected.\end{itemize}% ------------------------------------------------------------------------------ \subsection{Descriptor parameters}\label{sift.user.descriptor}% ------------------------------------------------------------------------------ The SIFT descriptor is a weighted and interpolated histogram of the gradient orientations and locations in a patch surrounding the keypoint. The descriptor has the following parameters:\begin{itemize}\item {\tt Magnif}. Magnification factor $m$. Each spatial bin of the histogram has support of size $m \sigma$, where $\sigma$ is the scale of the frame.\item {\tt NumSpatialBins}. Number of spatial bins. Together with the next parameter, this number defines the extension and dimension of the descriptor. The dimension of the descriptor (the total number of bins) is equal to$\mathtt{NumSpatialBins}^2 \times \mathtt{NumOrientBins}$ and its extension (the patch where the gradient statistic is collected) has radius $\mathtt{NumSpatialBins} \times m\sigma/2$. \item {\tt NumOrientBins}. Number of orientation bins.\end{itemize}% ------------------------------------------------------------------------------ \subsection{Direct access to SIFT components}\label{sift.user.direct}% ------------------------------------------------------------------------------ The SIFT code is decomposed in several M and MEX files, each implementing a portion of the algorithm. These programs can be run on their own or replaced. Appendix~\ref{sift.internals} contains information useful to do this.\begin{example}[Computing the SIFT descriptor directly]Sometimes it is useful to run the descriptor code alone.This can be done by calling the function {\tt siftdescriptor} (which is actually a MEX file.) See the function help for further details.\end{example}% ------------------------------------------------------------------------------ \bibliographystyle{plain}\bibliography{bibliography}% ------------------------------------------------------------------------------\appendix% ------------------------------------------------------------------------------ \section{Internals}\label{sift.internals}% ----------------------------------------------------------------------------- % ------------------------------------------------------------------------------ \subsection{Scale spaces}\label{sift.internals.ss}% ------------------------------------------------------------------------------\begin{figure}\begin{center}\begin{tabular}{lp{0.4\textwidth}p{0.3\textwidth}}\hline

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产一区二区不卡老阿姨| 亚洲制服丝袜在线| 久久不见久久见免费视频7| 欧美一区在线视频| 日韩电影免费在线看| 日韩精品一区二区三区视频在线观看| 91最新地址在线播放| 国产精品福利一区| 欧美午夜视频网站| 美女脱光内衣内裤视频久久网站 | 美洲天堂一区二卡三卡四卡视频| 91.xcao| 国内精品嫩模私拍在线| 中文字幕av一区二区三区免费看 | 亚洲h精品动漫在线观看| 欧美精品色综合| 国内成人免费视频| 亚洲欧洲精品一区二区精品久久久| 99re免费视频精品全部| 首页亚洲欧美制服丝腿| 久久综合久久综合亚洲| 91欧美激情一区二区三区成人| 亚洲国产人成综合网站| 精品三级在线看| 91麻豆成人久久精品二区三区| 香蕉影视欧美成人| 国产农村妇女精品| 欧美视频在线观看一区二区| 激情小说亚洲一区| 一区二区三区在线免费视频| 欧美zozozo| 在线看日本不卡| 国产精品影视网| 偷窥国产亚洲免费视频| 日本一区二区三区电影| 在线成人高清不卡| 成人动漫视频在线| 免费成人结看片| 亚洲美女电影在线| 2020国产精品| 欧美一区二区三区白人| 99这里都是精品| 久久97超碰国产精品超碰| 亚洲国产一二三| 国产精品久久久久久久第一福利| 欧美一三区三区四区免费在线看| 色一情一乱一乱一91av| 粉嫩一区二区三区性色av| 日韩高清不卡一区| 亚洲激情在线激情| 国产精品美女久久久久久久| 欧美不卡一二三| 3d动漫精品啪啪| 91久久精品国产91性色tv| 成人美女视频在线看| 狠狠色2019综合网| 日韩和欧美一区二区三区| 一区二区在线看| 《视频一区视频二区| 日本一区二区三区dvd视频在线| 欧美一区二区成人| 欧美日韩精品一区二区| 色琪琪一区二区三区亚洲区| 成人一级片网址| 国产精品亚洲第一区在线暖暖韩国| 日韩精品久久久久久| 亚洲午夜一二三区视频| 亚洲一区二区三区美女| 一区二区在线观看视频在线观看| 中文字幕亚洲一区二区av在线| 国产女主播视频一区二区| 中文字幕一区二区三区乱码在线| 中文字幕久久午夜不卡| 国产亚洲一本大道中文在线| 久久久精品国产免大香伊| 精品国免费一区二区三区| 欧美videos大乳护士334| 欧美一级欧美三级| 精品国产伦一区二区三区观看体验| 日韩欧美国产系列| 久久免费午夜影院| 国产三级欧美三级日产三级99 | 久久久精品国产99久久精品芒果| 日韩一区二区三区电影在线观看| 欧美日韩精品三区| 欧美高清性hdvideosex| 91精品国产综合久久香蕉麻豆| 欧美巨大另类极品videosbest| 91精品国产综合久久久久 | 欧美大片国产精品| 精品女同一区二区| 国产偷v国产偷v亚洲高清| 2020国产成人综合网| 国产精品麻豆久久久| 亚洲欧美日韩精品久久久久| 一二三区精品福利视频| 午夜天堂影视香蕉久久| 久久精品国产亚洲一区二区三区| 国精产品一区一区三区mba桃花| 国产91高潮流白浆在线麻豆 | 午夜精品久久久久久久蜜桃app| 天天亚洲美女在线视频| 激情成人综合网| 成人不卡免费av| 欧美日韩国产欧美日美国产精品| 日韩美女主播在线视频一区二区三区| 久久理论电影网| 亚洲乱码日产精品bd| 欧美bbbbb| av在线不卡免费看| 欧美日韩国产综合一区二区三区| 精品欧美一区二区久久| 亚洲免费毛片网站| 免费成人在线观看视频| 99久久精品国产网站| 91精品国产综合久久蜜臀| 国产欧美精品区一区二区三区| 一区二区三区成人在线视频| 久久 天天综合| 91成人免费在线| 久久综合九色欧美综合狠狠| 伊人色综合久久天天人手人婷| 国内久久精品视频| 欧美四级电影网| 欧美激情艳妇裸体舞| 视频一区欧美日韩| a4yy欧美一区二区三区| 精品日韩一区二区| 一区二区三区鲁丝不卡| 国产精品一级二级三级| 4438亚洲最大| 曰韩精品一区二区| 国产电影一区二区三区| 欧美一区二区三区精品| 一区二区成人在线| 懂色av中文字幕一区二区三区 | 久久久一区二区三区捆绑**| 午夜天堂影视香蕉久久| 99国产精品国产精品久久| 精品久久一区二区| 亚洲成人综合网站| 99久久久无码国产精品| 国产午夜亚洲精品理论片色戒| 91尤物视频在线观看| 精品电影一区二区| 视频一区二区国产| 在线观看精品一区| 亚洲少妇30p| 不卡的av网站| 国产亚洲欧美色| 精品亚洲成a人在线观看| 69堂亚洲精品首页| 五月激情六月综合| 欧美三片在线视频观看| 亚洲综合激情网| 色8久久精品久久久久久蜜 | 亚洲综合小说图片| 不卡一区二区在线| 国产精品青草综合久久久久99| 韩国av一区二区三区| 26uuu亚洲婷婷狠狠天堂| 奇米亚洲午夜久久精品| 91精品久久久久久久91蜜桃| 天天免费综合色| 欧美一区日韩一区| 免费成人av在线播放| 欧美成人三级电影在线| 久久国产欧美日韩精品| 精品国产乱码久久久久久免费| 精品一区二区三区免费| 精品国产制服丝袜高跟| 韩国毛片一区二区三区| 国产日韩欧美电影| 成人精品gif动图一区| 日韩久久一区二区| 在线观看不卡一区| 日韩精品午夜视频| 欧美mv日韩mv国产| 国产精品66部| 亚洲欧洲韩国日本视频| 欧洲另类一二三四区| 午夜激情一区二区| 欧美成人在线直播| 国产乱码字幕精品高清av| 国产精品午夜免费| 日本韩国欧美一区| 日韩电影一区二区三区| 久久久亚洲欧洲日产国码αv| 粉嫩绯色av一区二区在线观看| 亚洲特黄一级片| 欧美久久高跟鞋激| 国产一区二区在线看| 国产精品国产三级国产aⅴ中文| 日本精品一级二级| 麻豆视频一区二区| 国产精品二三区| 91精品久久久久久蜜臀| 成人黄色软件下载| 丝袜诱惑亚洲看片| 欧美激情一区二区在线|