亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? wxfrm_t.c

?? VC小波應用程序
?? C
字號:
/*
 *	This is a prototype file, not meant to be compiled directly.
 *	The including source file must define the following:
 *
 *		TYPE_ARRAY -- the base (scalar) type of all argument arrays
 *		FUNC_1D -- the name of the 1-dimensional transform function
 *		FUNC_ND -- the name of the N-dimensional transform function
 */

/* this is the minimum-order wavelet filter allowed */
#define MIN_ORDER 2

/* multidimensional transforms support a maximum of this many dimensions */
#define MXN_D 32

static void wfltr_convolve _PROTO((waveletfilter *wfltr, bool isFwd,
		TYPE_ARRAY *aIn, int incA, int n, TYPE_ARRAY *aXf));
static void wxfrm_1d_varstep _PROTO((TYPE_ARRAY *a, int incA, int nA, bool isFwd,
		waveletfilter *wfltr, TYPE_ARRAY *aXf));
static void wxfrm_nd_nonstd _PROTO((TYPE_ARRAY *a, int nA[], int nD,
		bool isFwd, waveletfilter *wfltr));
static void wxfrm_nd_std _PROTO((TYPE_ARRAY *a, int nA[], int nD,
		bool isFwd, waveletfilter *wfltr));

/*
 *	To avoid lots of unnecessary malloc/free calls, especially in
 *	multidimensional transforms, we use a "static global" buffer that, at the
 *	highest level, will be allocated once to the maximum possible size and
 *	freed when done.
 */
static TYPE_ARRAY *aTmp1D = NULL;

/* wfltr_convolve -- perform one convolution of a (general) wavelet transform */
static void wfltr_convolve(wfltr, isFwd, aIn, incA, n, aXf)
	waveletfilter *wfltr;	/* in: convolving filter */
	bool isFwd;			/* in: TRUE <=> forward transform */
	TYPE_ARRAY *aIn;	/* in: input data */
	int incA;			/* in: spacing of elements in aIn[] and aXf[] */
	int n;				/* in: size of aIn and aXf */
	TYPE_ARRAY *aXf;	/* out: output data (OK if == aIn) */
{
	int nDiv2 = n / 2;
	int iA, iHtilde, iGtilde, j, jH, jG, i;
	double sum;
	bool flip;

	/*
	 *	According to Daubechies:
	 *
	 *	H is the analyzing smoothing filter.
	 *	G is the analyzing detail filter.
	 *	Htilde is the reconstruction smoothing filter.
	 *	Gtilde is the reconstruction detail filter.
	 */

	/* the reconstruction detail filter is the mirror of the analysis smoothing filter */
	int nGtilde = wfltr->nH;

	/* the analysis detail filter is the mirror of the reconstruction smoothing filter */
	int nG = wfltr->nHtilde;

	if (isFwd) {
		/*
		 *	A single step of the analysis is summarized by:
		 *		aTmp1D[0..n/2-1] = H * a (smooth component)
		 *		aTmp1D[n/2..n-1] = G * a (detail component)
		 */
		for (i = 0; i < nDiv2; i++) {
			/*
			 *	aTmp1D[0..nDiv2-1] contains the smooth components.
			 */
			sum = 0.0;
			for (jH = 0; jH < wfltr->nH; jH++) {
				/*
				 *	Each row of H is offset by 2 from the previous one.
				 *
				 *	We assume our data is periodic, so we wrap the aIn[] values
				 *	if necessary.  If we have more samples than we have H
				 *	coefficients, we also wrap the H coefficients.
				 */
				iA = MOD(2 * i + jH - wfltr->offH, n);
				sum += wfltr->cH[jH] * aIn[incA * iA];
			}
			aTmp1D[i] = sum;

			/*
			 *	aTmp1D[nDiv2..n-1] contains the detail components.
			 */
			sum = 0.0;
			flip = TRUE;
			for (jG = 0; jG < nG; jG++) {
				/*
				 *	We construct the G coefficients on-the-fly from the
				 *	Htilde coefficients.
				 *
				 *	Like H, each row of G is offset by 2 from the previous
				 *	one.  As with H, we also allow the coefficents of G to
				 *	wrap.
				 *
				 *	Again as before, the aIn[] values may wrap.
				 */
				iA = MOD(2 * i + jG - wfltr->offG, n);
				if (flip)
					sum -= wfltr->cHtilde[nG - 1 - jG] * aIn[incA * iA];
				else
					sum += wfltr->cHtilde[nG - 1 - jG] * aIn[incA * iA];
				flip = !flip;
			}
			aTmp1D[nDiv2 + i] = sum;
		}
	} else {
		/*
		 *	The inverse transform is a little trickier to do efficiently.
		 *	A single step of the reconstruction is summarized by:
		 *
		 *		aTmp1D = Htilde^t * aIn[incA * (0..n/2-1)]
		 *				+ Gtilde^t * aIn[incA * (n/2..n-1)]
		 *
		 *	where x^t is the transpose of x.
		 */
		for (i = 0; i < n; i++)
			aTmp1D[i] = 0.0;	/* necessary */
		for (j = 0; j < nDiv2; j++) {
			for (iHtilde = 0; iHtilde < wfltr->nHtilde; iHtilde++) {
				/*
				 *	Each row of Htilde is offset by 2 from the previous one.
				 */
				iA = MOD(2 * j + iHtilde - wfltr->offHtilde, n);
				aTmp1D[iA] += wfltr->cHtilde[iHtilde] * aIn[incA * j];
			}
			flip = TRUE;
			for (iGtilde = 0; iGtilde < nGtilde; iGtilde++) {
				/*
				 *	As with Htilde, we also allow the coefficents of Gtilde,
				 *	which is the mirror of H, to wrap.
				 *
				 *	We assume our data is periodic, so we wrap the aIn[] values
				 *	if necessary.  If we have more samples than we have Gtilde
				 *	coefficients, we also wrap the Gtilde coefficients.
				 */
				iA = MOD(2 * j + iGtilde - wfltr->offGtilde, n);
				if (flip) {
					aTmp1D[iA] -= wfltr->cH[nGtilde - 1 - iGtilde]
							* aIn[incA * (j + nDiv2)];
				} else {
					aTmp1D[iA] += wfltr->cH[nGtilde - 1 - iGtilde]
							* aIn[incA * (j + nDiv2)];
				}
				flip = !flip;
			}
		}
	}
	for (i = 0; i < n; i++)
		aXf[incA * i] = aTmp1D[i];

	return;
}

/* wxfrm_1d_varstep -- 1-dimensional discrete wavelet transform with variable step size */
static void wxfrm_1d_varstep(aIn, incA, nA, isFwd, wfltr, aXf)
	TYPE_ARRAY *aIn;	/* in: original array */
	int incA;		/* in: spacing of elements in aIn[] and aXf[] */
	int nA;			/* in: size of a (must be power of 2) */
	bool isFwd;		/* in: TRUE <=> forward transform */
	waveletfilter *wfltr;	/* in: wavelet filter to use */
	TYPE_ARRAY *aXf;	/* out: transformed array */
{
	int iA;

	if (nA < MIN_ORDER)
		return;

	if (isFwd) {
		/*
		 *	Start at largest hierarchy, work towards smallest.
		 */
		wfltr_convolve(wfltr, isFwd, aIn, incA, nA, aXf);
		for (iA = nA / 2; iA >= MIN_ORDER; iA /= 2)
			wfltr_convolve(wfltr, isFwd, aXf, incA, iA, aXf);
	} else {
		/*
		 *	Start at smallest hierarchy, work towards largest.
		 */
		if (aXf != aIn) {
			for (iA = 0; iA < nA; iA++)
				aXf[incA * iA] = aIn[incA * iA];	/* required for inverse */
		}
		for (iA = MIN_ORDER; iA <= nA; iA *= 2)
			wfltr_convolve(wfltr, isFwd, aXf, incA, iA, aXf);
	}

	return;
}

/* wxfrm_[fd]a1d -- 1-dimensional discrete wavelet transform */
void FUNC_1D(a, nA, isFwd, wfltr, aXf)
	TYPE_ARRAY *a;		/* in: original array */
	int nA;				/* in: size of a (must be power of 2) */
	bool isFwd;			/* in: TRUE <=> forward transform */
	waveletfilter *wfltr;	/* in: wavelet filter to use */
	TYPE_ARRAY *aXf;	/* out: transformed array */
{
	assert(aTmp1D == NULL);

	(void) MALLOC_LINTOK(aTmp1D, nA, TYPE_ARRAY);
	wxfrm_1d_varstep(a, 1, nA, isFwd, wfltr, aXf);
	FREE_LINTOK(aTmp1D);
	aTmp1D = NULL;

	return;
}

/* wxfrm_[fd]and -- n-dimensional discrete wavelet transform */
void FUNC_ND(aIn, nA, nD, isFwd, isStd, wfltr, aXf)
	TYPE_ARRAY *aIn;	/* in: original data */
	int nA[];			/* in: size of each dimension of a (must be powers of 2) */
	int nD;				/* in: number of dimensions (size of nA[]) */
	bool isFwd;			/* in: TRUE <=> forward transform */
	bool isStd;			/* in: TRUE <=> standard basis */
	waveletfilter *wfltr;	/* in: wavelet filter to use */
	TYPE_ARRAY *aXf;	/* out: transformed data (ok if == a) */
{
	int k, d, nDMax, nATot;
	int lg2nA;

	if (nD < 1 || MXN_D < nD) {
		(void) fprintf(stderr,
				"number of dimensions must be between 1 and %d -- exiting\n",
				MXN_D);
		exit(1);
	}

	for (d = 0; d < nD; d++) {
		for (lg2nA = 0; (1 << lg2nA) < nA[d]; lg2nA++)
			continue;
		if ((1 << lg2nA) != nA[d]) {
			(void) fprintf(stderr,
					"size of dimension #%d (= %d) is not a power of 2 -- exiting\n", d, nA[d]);
			exit(1);
		}
	}

	nDMax = 1;
	nATot = 1;
	for (d = 0; d < nD; d++) {
		if (nA[d] > nDMax)
			nDMax = nA[d];
		nATot *= nA[d];
	}

	/*
	 *	Make the "static global" temp array aTmp1D, big enough to hold the
	 *	longest dimension.
	 */
	assert(aTmp1D == NULL);
	(void) MALLOC_LINTOK(aTmp1D, nDMax, TYPE_ARRAY);

	/*
	 *	aXf[] starts out equal to aIn[] and gets modified in-place.
	 *	(If they're the same array, we don't need to copy aIn[] to aXf[].)
	 */
	if (aIn != aXf) {
		for (k = 0; k < nATot; k++)
			aXf[k] = aIn[k];
	}

	if (isStd)
		wxfrm_nd_std(aXf, nA, nD, isFwd, wfltr);
	else
		wxfrm_nd_nonstd(aXf, nA, nD, isFwd, wfltr);

	FREE_LINTOK(aTmp1D);
	aTmp1D = NULL;

	return;
}

/* wxfrm_nd_nonstd -- perform a nonstandard n-dimensional wavelet transform */
static void wxfrm_nd_nonstd(a, nA, nD, isFwd, wfltr)
	TYPE_ARRAY *a;	/* in: original/final data (modified in-place) */
	int nA[];		/* in: size of each dimension of a (must be powers of 2) */
	int nD;			/* in: number of dimensions (size of nA[]) */
	bool isFwd;		/* in: TRUE <=> forward transform */
	waveletfilter *wfltr;	/* in: wavelet filter to use */
{
	int d, d0, dMax, nConv, iConv, iConvDecoded;
	int iA, nATot, nBTot;
	int nARev[MXN_D], nB[MXN_D], incA[MXN_D];
	bool stretchOk[MXN_D];

	/*
	 *	In C, a matrix a declared
	 *
	 *		TYPE_ARRAY a[n][m];
	 *
	 *	has nA declared
	 *
	 *		int nA[] = { n, m };
	 *
	 *	but it is convenient for us to refer to nA[] in reversed form as
	 *	nARev[], so that nARev[0] is the "fastest varying" index in the
	 *	multidimensional mapping a[].
	 */
	for (d = 0; d < nD; d++)
		nARev[d] = nA[nD - 1 - d];

	/*
	 *	A[] is the original matrix.  B[] is the A[]'s submatrix whose
	 *	transform we are computing at any given time.
	 */
	nATot = 1;
	for (d = 0; d < nD; d++) {
		incA[d] = nATot;
		nATot *= nARev[d];
	}

	nBTot = nATot;
	if (isFwd) {
		/* initially, B is equivalent to A */
		for (d = 0; d < nD; d++)
			nB[d] = nARev[d];
		/*
		 *	main loop is in descending scale
		 */
		while (nBTot > 1) {
			for (d0 = 0; d0 < nD; d0++) {
				if (nB[d0] <= 1)
					continue;
				nConv = nBTot / nB[d0];	/* # of convolutions to perform */
				/*
				 *	The idea is to enumerate the nConv convolutions we need to
				 *	do in direction d0 and pull apart the enumeration index,
				 *	reforming it into the index iA of the original matrix.
				 */
				for (iConv = 0; iConv < nConv; iConv++) {
					iA = 0;
					iConvDecoded = iConv;
					for (d = 0; d < nD; d++) {
						if (d != d0) {
							iA += incA[d] * (iConvDecoded % nB[d]);
							iConvDecoded /= nB[d];
						}
					}
					wfltr_convolve(wfltr, TRUE, &a[iA], incA[d0], nB[d0], &a[iA]);
				}
			}
			nBTot = 1;
			for (d = 0; d < nD; d++) {
				if (nB[d] > 1) {
					nB[d] /= 2;
					nBTot *= nB[d];
				}
			}
		}
	} else {
		/* initially, B is a 1x1x..x1 submatrix */
		for (d = 0; d < nD; d++)
			nB[d] = 1;
		nBTot = 1;
		/*
		 *	main loop is in ascending scale
		 */
		while (nBTot < nATot) {
			/*
			 *	We have to be careful about non-hypercubic grids.  In order to
			 *	duplicate what we've done above for the forward transform, if
			 *	nB[d0] is 1, we only stretch dimension d0 if
			 *
			 *		nARev[d0] / nB[d0] == max( nARev[d] / nB[d] ) for all d
			 *
			 *	The elements of stretchOk will reflect this.  dMax is the
			 *	dimension that has the largest stretch.
			 */
			dMax = 0;
			for (d = 1; d < nD; d++) {
				if (nARev[d] * nB[dMax] >= nARev[dMax] * nB[d])
					dMax = d;
			}
			for (d = 0; d < nD; d++)
				stretchOk[d] = (nB[d] > 1 || (nARev[d] * nB[dMax] >= nARev[dMax] * nB[d]));

			for (d0 = nD - 1; d0 >= 0; d0--) {
				if (!stretchOk[d0])
					continue;
				nB[d0] *= 2;
				nBTot *= 2;
			}

			for (d0 = nD - 1; d0 >= 0; d0--) {
				if (!stretchOk[d0])
					continue;
				nConv = nBTot / nB[d0];
				/*
				 *	As with the forward transform, the idea is to enumerate the
				 *	nConv convolutions we need to do in direction d0 and pull
				 *	apart the enumeration index, reforming it into the index iA
				 *	of the original matrix.
				 */
				for (iConv = 0; iConv < nConv; iConv++) {
					iA = 0;
					iConvDecoded = iConv;
					for (d = 0; d < nD; d++) {
						/*
						 *	Non-stretched directions don't count in nConv, so
						 *	they don't count in the index computation, either.
						 *	Neither does d0, obviously.
						 */
						if (d != d0 && stretchOk[d]) {
							iA += incA[d] * (iConvDecoded % nB[d]);
							iConvDecoded /= nB[d];
						}
					}
					wfltr_convolve(wfltr, FALSE, &a[iA], incA[d0], nB[d0], &a[iA]);
				}
			}
		}
	}
	return;
}

/* wxfrm_nd_std -- perform a standard n-dimensional wavelet transform */
static void wxfrm_nd_std(a, nA, nD, isFwd, wfltr)
	TYPE_ARRAY *a;		/* in: original/final data (modified in-place) */
	int nA[];		/* in: size of each dimension of a (must be powers of 2) */
	int nD;			/* in: number of dimensions (size of nA[]) */
	bool isFwd;			/* in: TRUE <=> forward transform */
	waveletfilter *wfltr;	/* in: wavelet filter to use */
{
	int incA = 1;
	int incNext, d, i1, i2, nATot;
	int nARev[MXN_D];

	/*
	 *	In C, a matrix "a" declared
	 *
	 *		TYPE_ARRAY a[n][m];
	 *
	 *	has "nA" declared
	 *
	 *		int nA[] = { n, m };
	 *
	 *	but it is convenient for us to refer to nA[] in reversed form as
	 *	nARev[], so that nARev[0] is the "fastest varying" index in the
	 *	multidimensional mapping a[].
	 */
	for (d = 0; d < nD; d++)
		nARev[d] = nA[nD - 1 - d];

	nATot = 1;
	for (d = 0; d < nD; d++)
		nATot *= nARev[d];

	/*
	 *	main loop is over the dimensions
	 */
	for (d = 0; d < nD; d++) {
		incNext = nARev[d] * incA;
		if (nARev[d] >= MIN_ORDER) {
			for (i2 = 0; i2 < nATot; i2 += incNext) {
				for (i1 = 0; i1 < incA; i1++) {
					/*
					 *	Use a variable step size (incA) and pointers to
					 *	perform the one-dimensional wavelet transform in-place.
					 */
					wxfrm_1d_varstep(&a[i1 + i2], incA, nARev[d], isFwd, wfltr,
							&a[i1 + i2]);
				}
			}
		}
		incA = incNext;
	}
	return;
}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产成人99久久亚洲综合精品| 欧美美女一区二区| 欧美性极品少妇| 精品国产一区二区三区久久久蜜月 | 欧美色网一区二区| 久久免费精品国产久精品久久久久| 精品国产一区二区三区不卡| 亚洲婷婷在线视频| 久久国产精品区| 91国产福利在线| 日韩欧美一二三区| ...xxx性欧美| 看片的网站亚洲| 色老头久久综合| 久久久久九九视频| 性感美女久久精品| av电影一区二区| 日韩免费看网站| 亚洲免费在线播放| 狠狠色丁香婷婷综合| 欧美在线观看视频在线| 久久综合狠狠综合久久激情| 亚洲自拍偷拍网站| 国产成人av一区二区| 精品少妇一区二区三区日产乱码| 日韩一区二区三区视频在线观看| 中文字幕的久久| 紧缚奴在线一区二区三区| 91美女精品福利| 久久久久久亚洲综合| 五月天中文字幕一区二区| 成人高清视频在线观看| 久久尤物电影视频在线观看| 婷婷国产v国产偷v亚洲高清| 91美女在线看| 国产精品全国免费观看高清| 韩国女主播成人在线观看| 日韩欧美电影一区| 免费观看日韩电影| 在线播放一区二区三区| 亚洲图片欧美色图| 91欧美激情一区二区三区成人| 国产精品午夜电影| 成人av午夜电影| 国产精品美女一区二区三区| 福利一区在线观看| 久久久精品天堂| 国产aⅴ综合色| 久久精品人人爽人人爽| 韩国女主播成人在线观看| 久久久久久久久一| 婷婷中文字幕一区三区| 在线不卡中文字幕| 伦理电影国产精品| 久久久青草青青国产亚洲免观| 国产一区二区三区精品视频| 精品久久久久久久久久久久久久久久久 | 亚洲国产精品ⅴa在线观看| 久草热8精品视频在线观看| 欧美一级精品大片| 久久精品国产第一区二区三区| 精品日韩欧美在线| 高清shemale亚洲人妖| 波多野结衣亚洲一区| 日韩精品一区国产麻豆| 成人精品国产福利| 亚洲午夜久久久久久久久电影网 | 99riav一区二区三区| 亚洲国产视频在线| 久久综合色鬼综合色| 在线视频一区二区免费| 国内精品久久久久影院薰衣草| 一区二区在线观看视频| 欧美成人bangbros| 欧美午夜不卡视频| 成人永久免费视频| 麻豆一区二区99久久久久| 日韩毛片一二三区| 久久婷婷久久一区二区三区| 精品污污网站免费看| 成人性色生活片| 久久国产尿小便嘘嘘| 亚洲夂夂婷婷色拍ww47| 久久精品一区蜜桃臀影院| 91精品一区二区三区久久久久久| 高清不卡一区二区在线| 激情综合五月天| 亚洲成人免费影院| 1000精品久久久久久久久| 久久免费看少妇高潮| 日韩欧美资源站| 51精品国自产在线| 欧美三级中文字| 色婷婷久久久综合中文字幕 | 日韩理论片中文av| 久久久蜜桃精品| 日韩精品在线看片z| 91精品午夜视频| 欧美日韩一区三区四区| 欧美亚洲综合另类| 91亚洲精品久久久蜜桃| 成人综合婷婷国产精品久久免费| 精品一区二区三区影院在线午夜 | 一区二区三区日韩欧美| 国产精品久久精品日日| 国产三级精品三级| 久久久91精品国产一区二区三区| 日韩亚洲欧美高清| 日韩精品影音先锋| 精品国产乱码久久久久久图片 | 亚洲天堂中文字幕| 欧美一区二区美女| 欧美三日本三级三级在线播放| 国产一区二区三区黄视频| 精品亚洲成a人在线观看| 久久精品噜噜噜成人av农村| 蜜桃传媒麻豆第一区在线观看| 日韩av中文在线观看| 天天综合日日夜夜精品| 天堂久久久久va久久久久| 婷婷亚洲久悠悠色悠在线播放 | 亚洲欧美aⅴ...| 亚洲美女视频在线观看| 亚洲精选视频免费看| 亚洲男人电影天堂| 亚洲二区在线观看| 美女网站色91| 成人免费视频caoporn| 91丨porny丨国产| 91.com在线观看| 精品伦理精品一区| 国产精品短视频| 香蕉成人伊视频在线观看| 麻豆视频观看网址久久| 国产美女在线观看一区| jiyouzz国产精品久久| 欧美亚洲一区二区在线| 精品久久久久久久久久久久久久久久久| 久久这里只有精品视频网| 中文字幕亚洲在| 亚洲r级在线视频| 国模一区二区三区白浆| 一本久久综合亚洲鲁鲁五月天| 欧美日韩免费高清一区色橹橹| 欧美一区二区三区四区高清 | 粗大黑人巨茎大战欧美成人| 色综合天天综合在线视频| 欧美日韩国产中文| 国产亲近乱来精品视频 | 欧美人动与zoxxxx乱| 精品sm在线观看| 一区二区三区欧美亚洲| 国产一区二区三区四区在线观看| 99国产精品久| 日韩精品资源二区在线| 亚洲另类在线一区| 国产精品一级黄| 欧美三级一区二区| 国产精品免费免费| 蜜臀久久久久久久| 99视频精品全部免费在线| 日韩色在线观看| 亚洲最新视频在线观看| 风间由美一区二区三区在线观看| 欧美日本乱大交xxxxx| 国产欧美一区二区精品忘忧草| 亚洲成人激情综合网| 成人高清免费在线播放| 精品福利一二区| 日韩av中文在线观看| 色综合久久久久| 欧美国产精品中文字幕| 美女视频免费一区| 欧美久久久影院| 亚洲与欧洲av电影| av激情综合网| 欧美国产精品一区二区三区| 精品系列免费在线观看| 日韩一区二区在线免费观看| 亚洲国产三级在线| 91福利资源站| 亚洲激情第一区| 在线影院国内精品| 亚洲视频免费在线观看| bt欧美亚洲午夜电影天堂| 久久一区二区三区四区| 精品一区二区三区久久久| 91精品国产91热久久久做人人| 五月天丁香久久| 欧美三级韩国三级日本一级| 亚洲综合区在线| 欧美亚洲精品一区| 亚洲国产精品视频| 欧美亚洲日本一区| 午夜精品视频在线观看| 欧亚一区二区三区| 亚洲成人av中文| 91精品国产综合久久小美女| 偷偷要91色婷婷| 欧美大片免费久久精品三p|