亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? jdqz.m

?? 一個很好的Matlab編制的數(shù)據(jù)降維處理軟件
?? M
?? 第 1 頁 / 共 5 頁
字號:
function varargout=jdqz(varargin)%JDQZ computes a partial generalized Schur decomposition (or QZ%  decomposition) of a pair of square matrices or operators.%  %  LAMBDA=JDQZ(A,B) and JDQZ(A,B) return K eigenvalues of the matrix pair%  (A,B), where K=min(5,N) and N=size(A,1) if K has not been specified.%  %  [X,JORDAN]=JDQZ(A,B) returns the eigenvectors X and the Jordan%  structure JORDAN:  A*X=B*X*JORDAN. The diagonal of JORDAN contains the%  eigenvalues: LAMBDA=DIAG(JORDAN). JORDAN is an K by K matrix with the%  eigenvalues on the diagonal and zero or one on the first upper diagonal%  elements. The other entries are zero.%  %  [X,JORDAN,HISTORY]=JDQZ(A,B) returns also the convergence history.%  %  [X,JORDAN,Q,Z,S,T,HISTORY]=JDQZ(A,B) %  If between four and seven output arguments are required, then Q and Z%  are N by K orthonormal, S and T are K by K upper triangular such that%  they form a partial generalized Schur decomposition: A*Q=Z*S and%  B*Q=Z*T. Then LAMBDA=DIAG(S)./DIAG(T) and X=Q*Y with Y the eigenvectors%  of the pair (S,T): S*Y=T*Y*JORDAN (see also OPTIONS.Schur).%  %  JDQZ(A,B) %  JDQZ('Afun','Bfun')%  The first input argument is either a square matrix (which can be full%  or sparse, symmetric or nonsymmetric, real or complex), or a string%  containing the name of an M-file which applies a linear operator to the%  columns of a given matrix. In the latter case, the M-file, say Afun.m,%  must return the dimension N of the problem with N = Afun([],'dimension').%  For example, JDQZ('fft',...) is much faster than JDQZ(F,...), where F is%  the explicit FFT matrix.%  If another input argument is a square N by N matrix or the name of an%  M-file, then B is this argument (regardless whether A is an M-file or a%  matrix). If B has not been specified, then B is assumed to be the%  identity unless A is an M-file with two output vectors of dimension N%  with [AV,BV]=Afun(V), or with AV=Afun(V,'A') and BV=Afun(V,'B').%  %  The remaining input arguments are optional and can be given in%  practically any order:%  %  [X,JORDAN,Q,Z,S,T,HISTORY] = JDQZ(A,B,K,SIGMA,OPTIONS)%  [X,JORDAN,Q,Z,S,T,HISTORY] = JDQZ('Afun','Bfun',K,SIGMA,OPTIONS)%  %  where%  %      K         an integer, the number of desired eigenvalues.%      SIGMA     a scalar shift or a two letter string.%      OPTIONS   a structure containing additional parameters.%  %  If K is not specified, then K = MIN(N,5) eigenvalues are computed.%  %  If SIGMA is not specified, then the Kth eigenvalues largest in%  magnitude are computed. If SIGMA is a real or complex scalar, then the%  Kth eigenvalues nearest SIGMA are computed. If SIGMA is column vector%  of size (L,1), then the Jth eigenvalue nearest to SIGMA(MIN(J,L))%  is computed for J=1:K. SIGMA is the "target" for the desired eigenvalues.%  If SIGMA is one of the following strings, then it specifies the desired %  eigenvalues.%  %    SIGMA            Specified eigenvalues%  %    'LM'             Largest Magnitude  %    'SM'             Smallest Magnitude (same as SIGMA = 0)%    'LR'             Largest Real part%    'SR'             Smallest Real part%    'BE'             Both Ends. Computes K/2 eigenvalues%                     from each end of the spectrum (one more%                     from the high end if K is odd.)%  %  If 'TestSpace' is 'Harmonic' (see OPTIONS), then SIGMA = 0 is the%  default, otherwise SIGMA = 'LM' is the default.%  %  %  The OPTIONS structure specifies certain parameters in the algorithm.%  %   Field name            Parameter                             Default%  %   OPTIONS.Tol           Convergence tolerance:                1e-8 %                           norm(r) <= Tol/SQRT(K)   %   OPTIONS.jmin          Minimum dimension search subspace V   K+5%   OPTIONS.jmax          Maximum dimension search subspace V   jmin+5%   OPTIONS.MaxIt         Maximum number of iterations.         100%   OPTIONS.v0            Starting space                        ones+0.1*rand%   OPTIONS.Schur         Gives schur decomposition             'no'%                           If 'yes', then X and JORDAN are%                           not computed and [Q,Z,S,T,HISTORY]%                           is the list of output arguments.%   OPTIONS.TestSpace     Defines the test subspace W           'Harmonic'%                           'Standard':    W=sigma*A*V+B*V%                           'Harmonic':    W=A*V-sigma*B*V%                           'SearchSpace': W=V%                            W=V is justified if B is positive%                            definite.%   OPTIONS.Disp          Shows size of intermediate residuals  'no'%                           and the convergence history%   OPTIONS.NSigma        Take as target for the second and     'no'%                           following eigenvalues, the best  %                           approximate eigenvalues from the %                           test subspace.  %   OPTIONS.Pairs         Search for conjugated eigenpairs      'no'%   OPTIONS.LSolver       Linear solver                         'GMRES'%   OPTIONS.LS_Tol        Residual reduction linear solver      1,0.7,0.7^2,..%   OPTIONS.LS_MaxIt      Maximum number it.  linear solver     5%   OPTIONS.LS_ell        ell for BiCGstab(ell)                 4%   OPTIONS.Precond       Preconditioner  (see below)           identity.%   OPTIONS.Type_Precond  Way of using preconditioner           'left'%  %  For instance%  %    options=struct('Tol',1.0e-8,'LSolver','BiCGstab','LS_ell',4,'Precond',M);%  %  changes the convergence tolerance to 1.0e-8, takes BiCGstab as linear %  solver, and takes M as preconditioner (for ways of defining M, see below).%%%  PRECONDITIONING. The action M-inverse of the preconditioner M (an %  approximation of A-lamda*B) on an N-vector V can be defined in the %  OPTIONS%  %     OPTIONS.Precond%     OPTIONS.L_Precond     same as OPTIONS.Precond%     OPTIONS.U_Precond%     OPTIONS.P_Precond%%  If no preconditioner has been specified (or is []), then M\V=V (M is%  the identity).%  If Precond is an N by N matrix, say, K, then%        M\V = K\V.%  If Precond is an N by 2*N matrix, say, K, then%        M\V = U\L\V, where K=[L,U], and L and U are N by N matrices.%  If Precond is a string, say, 'Mi', then%        if Mi(V,'L') and Mi(V,'U') return N-vectors %               M\V = Mi(Mi(V,'L'),'U')%        otherwise %               M\V = Mi(V) or M\V=Mi(V,'preconditioner').%  Note that Precond and A can be the same string.%  If L_Precond and U_Precond are strings, say, 'Li' and 'Ui', %  respectively, then%        M\V=Ui(Li(V)).%  If (P_precond,) L_Precond, and U_precond are N by N matrices, say, %  (P,) L, and U, respectively, then%        M\V=U\L\(P*V)      (P*M=L*U)%%     OPTIONS.Type_Precond%  The preconditioner can be used as explicit left preconditioner%  ('left', default), as explicit right preconditioner ('right') or %  implicitly ('impl').%  %%  JDQZ without input arguments returns the options and its defaults.%%   Gerard Sleijpen.%   Copyright (c) 2002%%% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.4b.% The toolbox can be obtained from http://www.cs.unimaas.nl/l.vandermaaten% You are free to use, change, or redistribute this code in any way you% want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author.%% (C) Laurens van der Maaten% Maastricht University, 2007global Qschur Zschur Sschur Tschur ...       Operator_MVs Precond_Solves ...       MinvZ QastMinvZif nargin==0   possibilities, return,end%%% Read/set parameters[n,nselect,Sigma,kappa,SCHUR,...   jmin,jmax,tol0,maxit,V,AV,BV,TS,DISP,PAIRS,JDV0,FIX_tol,track,NSIGMA,...   lsolver,LSpar] = ReadOptions(varargin{1:nargin});Qschur = zeros(n,0);    Zschur=zeros(n,0);; MinvZ  = zeros(n,0);    QastMinvZ=zeros(0,0); Sschur = []; Tschur=[]; history = []; %%% Return if eigenvalueproblem is trivialif n<2  if n==1, Qschur=1; Zschur=1; [Sschur,Tschur]=MV(1); end  if nargout == 0, Lambda=Sschur/Tschur, else  [varargout{1:nargout}]=output(history,SCHUR,1,Sschur/Tschur); end, return, end%---------- SET PARAMETERS & STRINGS FOR OUTPUT -------------------------if     TS==0, testspace='sigma(1)''*Av+sigma(2)''*Bv';elseif TS==1, testspace='sigma(2)*Av-sigma(1)*Bv';elseif TS==2, testspace='v'; elseif TS==3, testspace='Bv';elseif TS==4, testspace='Av';endString=['\r#it=%i #MV=%3i, dim(V)=%2i, |r_%2i|=%6.1e  '];%------------------- JDQZ -----------------------------------------------% fprintf('Scaling with kappa=%6.4g.',kappa)k=0; nt=0; j=size(V,2); nSigma=size(Sigma,1);it=0; extra=0; Zero=[]; target=[]; tol=tol0/sqrt(nselect);INITIATE=1;  JDV=0; rKNOWN=0; EXPAND=0; USE_OLD=0; DETECTED=0;time=clock;if TS ~=2while (k<nselect & it<maxit)   %%% Initialize target, test space and interaction matrices   if INITIATE, % set new target      nt=min(nt+1,nSigma); sigma = Sigma(nt,:); nlit=0; lit=0;        if j<2        [V,AV,BV]=Arnoldi(V,AV,BV,sigma,jmin,nselect,tol);        rKNOWN=0; EXPAND=0; USE_OLD=0; DETECTED=0; target=[];        j=min(jmin,n-k);      end      if DETECTED & NSIGMA         [Ur,Ul,St,Tt] = SortQZ(WAV,WBV,sigma,kappa);         y=Ur(:,1); q=V*y; Av=AV*y; Bv=BV*y;          [r,z,nr,theta]=Comp_rz(RepGS(Zschur,[Av,Bv],0),kappa);         sigma=ScaleEig(theta);         USE_OLD=NSIGMA; rKNOWN=1; lit=10;      end         NEWSHIFT= 1;       if DETECTED & TS<2, NEWSHIFT= ~min(target==sigma); end      target=sigma; ttarget=sigma;      if ischar(ttarget), ttrack=0; else, ttrack=track; end      if NEWSHIFT          v=V; Av=AV; Bv=BV; W=eval(testspace);         %%% V=RepGS(Qschur,V); [AV,BV]=MV(V); %%% more stability??         %%% W=RepGS(Zschur,eval(testspace));  %%% dangerous if sigma~lambda         if USE_OLD, W(:,1)=V(:,1); end,          W=RepGS(Zschur,W); WAV=W'*AV;  WBV=W'*BV;      end      INITIATE=0; DETECTED=0; JDV=0;   end % if INITIATE   %%% Solve the preconditioned correction equation   if rKNOWN,      if JDV, z=W; q=V; extra=extra+1;          if DISP,  fprintf('  %2i-d proj.\n',k+j-1), end       end      if FIX_tol*nr>1 & ~ischar(target), theta=target; else, FIX_tol=0; end      t=SolvePCE(theta,q,z,r,lsolver,LSpar,lit);       nlit=nlit+1; lit=lit+1; it=it+1;      EXPAND=1; rKNOWN=0; JDV=0;   end % if rKNOWN       %%% Expand the subspaces and the interaction matrices   if EXPAND      [v,zeta]=RepGS([Qschur,V],t);      V=[V,v];       [Av,Bv]=MV(v); AV=[AV,Av]; BV=[BV,Bv];       w=eval(testspace); w=RepGS([Zschur,W],w);      WAV=[WAV,W'*Av;w'*AV]; WBV=[WBV,W'*Bv;w'*BV]; W=[W,w];      j=j+1; EXPAND=0;      %%% Check for stagnation      if abs(zeta(size(zeta,1),1))/norm(zeta)<0.06, JDV=JDV0; end   end % if EXPAND    %%% Solve projected eigenproblem   if USE_OLD      [Ur,Ul,St,Tt]=SortQZ(WAV,WBV,ttarget,kappa,(j>=jmax)*jmin,y);    else      [Ur,Ul,St,Tt]=SortQZ(WAV,WBV,ttarget,kappa,(j>=jmax)*jmin);    end   %%% Compute approximate eigenpair and residual   y=Ur(:,1); q=V*y; Av=AV*y; Bv=BV*y;    [r,z,nr,theta]=Comp_rz(RepGS(Zschur,[Av,Bv],0),kappa);    %%%=== an alternative, but less stable way of computing z =====   % beta=Tt(1,1); alpha=St(1,1); theta=[alpha,beta];   % r=RepGS(Zschur,beta*Av-alpha*Bv,0); nr=norm(r); z=W*Ul(:,1);   rKNOWN=1; if nr<ttrack, ttarget=ScaleEig(theta); end         if DISP,                                  %%% display history            fprintf(String,it,Operator_MVs,j,nlit,nr),          end          history=[history;nr,it,Operator_MVs];    %%% save history   %%% check convergence    if (nr<tol)      %%% EXPAND Schur form      Qschur=[Qschur,q]; Zschur=[Zschur,z];      Sschur=[[Sschur;zeros(1,k)],Zschur'*Av];       Tschur=[[Tschur;zeros(1,k)],Zschur'*Bv];  Zero=[Zero,0];      k=k+1;       if ischar(target), Target(k,:)=[nt,0,0];      else, Target(k,:)=[0,target]; end      if DISP, ShowEig(theta,target,k); end      if (k>=nselect), break; end;      %%% Expand preconditioned Schur matrix MinvZ=M\Zschur      UpdateMinvZ;      J=[2:j]; j=j-1; Ur=Ur(:,J); Ul=Ul(:,J);       V=V*Ur; AV=AV*Ur; BV=BV*Ur; W=W*Ul;       WAV=St(J,J); WBV=Tt(J,J);        rKNOWN=0; DETECTED=1;  USE_OLD=0;      %%% check for conjugate pair      if PAIRS & (abs(imag(theta(1)/theta(2)))>tol)          t=ImagVector(q); % t=conj(q); t=t-q*(q'*t);         if norm(t)>tol, t=RepGS([Qschur,V],t,0);             if norm(t)>200*tol               target=ScaleEig(conj(theta));               EXPAND=1; DETECTED=0;                if DISP, fprintf('--- Checking for conjugate pair ---\n'), end            end         end      end          INITIATE = ( j==0 & DETECTED);   elseif DETECTED %%% To detect whether another eigenpair is accurate enough       INITIATE=1;    end % if (nr<tol)      %%% restart if dim(V)> jmax   if j==jmax      j=jmin; J=[1:j];       Ur=Ur(:,J); Ul=Ul(:,J);       V=V*Ur; AV=AV*Ur; BV=BV*Ur; W=W*Ul;       WAV=St(J,J); WBV=Tt(J,J);    end % if j==jmaxend % while kend % if TS~=2if TS==2Q0=Qschur; ZastQ=[];% WAV=V'*AV; WBV=V'*BV;while (k<nselect & it<maxit)   %%% Initialize target, test space and interaction matrices   if INITIATE & ( nSigma>k | NSIGMA), % set new target      nt=min(nt+1,nSigma); sigma = Sigma(nt,:); nlit=0; lit=0;                      if j<2        [V,AV,BV]=Arnoldi(V,AV,BV,sigma,jmin,nselect,tol);        rKNOWN=0; EXPAND=0; USE_OLD=0; DETECTED=0; target=[];        j=min(jmin,n-k);;       end      if DETECTED & NSIGMA         [Ur,Ul,St,Tt]=SortQZ(WAV,WBV,sigma,kappa,1);          q=RepGS(Zschur,V*Ur(:,1)); [Av,Bv]=MV(q);          [r,z,nr,theta]=Comp_rz(RepGS(Zschur,[Av,Bv],0),kappa);          sigma=ScaleEig(theta);          USE_OLD=NSIGMA; rKNOWN=1; lit=10;      end         target=sigma; ttarget=sigma;      if ischar(ttarget), ttrack=0; else, ttrack=track; end      if ~DETECTED         %%% additional stabilisation. May not be needed         %%% V=RepGS(Zschur,V); [AV,BV]=MV(V);          %%% end add. stab.         WAV=V'*AV; WBV=V'*BV;      end      DETECTED=0; INITIATE=0; JDV=0;    end % if INITIATE   %%% Solve the preconditioned correction equation   if rKNOWN,      if JDV, z=V; q=V; extra=extra+1;          if DISP,  fprintf('  %2i-d proj.\n',k+j-1), end       end      if FIX_tol*nr>1 & ~ischar(target), theta=target; else, FIX_tol=0; end      t=SolvePCE(theta,q,z,r,lsolver,LSpar,lit);       nlit=nlit+1; lit=lit+1; it=it+1;      EXPAND=1; rKNOWN=0; JDV=0;   end % if rKNOWN   %%% expand the subspaces and the interaction matrices   if EXPAND      [v,zeta]=RepGS([Zschur,V],t); [Av,Bv]=MV(v);       WAV=[WAV,V'*Av;v'*AV,v'*Av]; WBV=[WBV,V'*Bv;v'*BV,v'*Bv];      V=[V,v]; AV=[AV,Av]; BV=[BV,Bv];       j=j+1; EXPAND=0;      %%% Check for stagnation      if abs(zeta(size(zeta,1),1))/norm(zeta)<0.06, JDV=JDV0; end    end % if EXPAND    %%% compute approximate eigenpair   if USE_OLD      [Ur,Ul]=SortQZ(WAV,WBV,ttarget,kappa,(j>=jmax)*jmin,Ur(:,1));    else      [Ur,Ul]=SortQZ(WAV,WBV,ttarget,kappa,(j>=jmax)*jmin);   end        %%% Compute approximate eigenpair and residual   q=V*Ur(:,1); Av=AV*Ur(:,1); Bv=BV*Ur(:,1);     [r,z,nr,theta]=Comp_rz(RepGS(Zschur,[Av,Bv],0),kappa);    rKNOWN=1; if nr<ttrack, ttarget=ScaleEig(theta); end          if DISP,                                 %%% display history             fprintf(String,it,Operator_MVs, j,nlit,nr),           end            history=[history;nr,it,Operator_MVs];   %%% save history      %%% check convergence    if (nr<tol)      %%% expand Schur form      [q,a]=RepGS(Q0,q); a1=a(k+1,1); a=a(1:k,1);      %%% ZastQ=Z'*Q0        Q0=[Q0,q]; %%% the final Qschur      ZastQ=[ZastQ,Zschur'*q;z'*Q0]; Zschur=[Zschur,z]; Qschur=[Qschur,z];       Sschur=[[Sschur;Zero],a1\(Zschur'*Av-[Sschur*a;0])];

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲乱码日产精品bd| 日本午夜精品视频在线观看| 亚洲自拍都市欧美小说| 狠狠久久亚洲欧美| 在线观看91精品国产入口| 2021中文字幕一区亚洲| 亚洲r级在线视频| av资源网一区| 日韩女优电影在线观看| 亚洲另类色综合网站| 国产成人av影院| 精品福利一区二区三区免费视频| 亚洲制服丝袜av| av亚洲产国偷v产偷v自拍| 欧美精品一区二区三区很污很色的| 午夜精品影院在线观看| eeuss鲁片一区二区三区| 久久综合给合久久狠狠狠97色69| 日韩成人av影视| 欧美日韩国产高清一区二区| 又紧又大又爽精品一区二区| 色网综合在线观看| 中文字幕在线不卡一区二区三区| 国产69精品久久久久毛片| 欧美不卡一区二区三区| 日韩av中文字幕一区二区三区| 欧美伊人久久久久久久久影院| 日韩理论片网站| 91麻豆精品秘密| 亚洲精品欧美在线| 91视频.com| 亚洲综合一二区| 日本乱人伦一区| 亚洲国产精品尤物yw在线观看| 91久久精品一区二区三| 亚洲视频免费在线观看| 色狠狠桃花综合| 亚洲成人激情综合网| 欧美日韩在线精品一区二区三区激情 | 欧美在线一二三| 一区二区三区四区中文字幕| 欧美三级蜜桃2在线观看| 亚洲成人av一区二区三区| 91精品久久久久久久99蜜桃| 久久99蜜桃精品| 久久久久亚洲蜜桃| 菠萝蜜视频在线观看一区| 日韩理论片网站| 欧美精品第1页| 久久精品国产精品亚洲综合| 久久久久久久久99精品| 丰满放荡岳乱妇91ww| 亚洲色图色小说| 欧美色区777第一页| 男人的天堂久久精品| 久久精品免视看| 91在线码无精品| 天天综合日日夜夜精品| 久久这里都是精品| 色视频欧美一区二区三区| 日韩av成人高清| 欧美国产精品v| 欧美三级在线视频| 九九国产精品视频| 亚洲日本韩国一区| 91精品国产色综合久久不卡电影 | 色综合久久久久综合| 亚洲第一综合色| 久久精品在线免费观看| 欧美日韩一区视频| 精品一区精品二区高清| 亚洲三级免费电影| 精品国精品国产| 欧美艳星brazzers| 国产成人精品在线看| 午夜视频在线观看一区二区三区| 久久久久国产精品麻豆ai换脸| 在线观看日韩精品| 国产高清成人在线| 性久久久久久久久| 中文字幕亚洲精品在线观看| 日韩无一区二区| 在线看国产一区| www.欧美精品一二区| 蜜桃视频在线观看一区二区| 亚洲综合一区二区三区| 中文字幕av一区二区三区| 日韩欧美一区二区三区在线| 欧美自拍偷拍午夜视频| 99视频有精品| 成人中文字幕合集| 国产一区二区免费视频| 蜜桃视频一区二区| 日日夜夜免费精品| 亚洲专区一二三| 一区二区三区四区av| 国产精品视频线看| 国产女人18毛片水真多成人如厕| 精品91自产拍在线观看一区| 欧美久久一二三四区| 在线看日韩精品电影| 91麻豆国产精品久久| www.成人网.com| 成人丝袜18视频在线观看| 激情综合色综合久久| 久草在线在线精品观看| 丝袜美腿亚洲色图| 亚洲成a人v欧美综合天堂下载| 依依成人综合视频| 亚洲欧美另类久久久精品| 中文字幕在线观看一区| 国产精品成人免费精品自在线观看| 国产蜜臀av在线一区二区三区| 久久精品亚洲一区二区三区浴池 | 91精品国产综合久久久久久久久久| 91国模大尺度私拍在线视频| 色欧美片视频在线观看在线视频| 一本色道久久综合亚洲91| 在线一区二区观看| 欧美日韩午夜在线视频| 欧美人妇做爰xxxⅹ性高电影| 欧美二区三区91| 欧美α欧美αv大片| 日韩欧美国产一区二区三区| 精品久久久久久久久久久久久久久久久 | 另类人妖一区二区av| 蜜桃久久av一区| 国产精品正在播放| 99久久er热在这里只有精品15| 91论坛在线播放| 8x8x8国产精品| 精品福利一二区| 亚洲日本在线视频观看| 天涯成人国产亚洲精品一区av| 久久国产精品一区二区| 成人av小说网| 欧美另类久久久品| 久久亚洲精品国产精品紫薇| 欧美国产亚洲另类动漫| 亚洲影院免费观看| 美美哒免费高清在线观看视频一区二区| 九一九一国产精品| 99久久免费视频.com| 8x8x8国产精品| 国产精品久久久久7777按摩| 亚洲一区二区四区蜜桃| 捆绑调教一区二区三区| 成人性色生活片| 69精品人人人人| 国产精品不卡在线| 五月综合激情网| 成人av在线一区二区| 欧美美女视频在线观看| 欧美激情一区二区三区四区| 亚洲丰满少妇videoshd| 国产激情91久久精品导航| 欧美性猛交xxxxxx富婆| 久久先锋影音av| 亚洲国产va精品久久久不卡综合| 国产一区中文字幕| 欧日韩精品视频| 国产精品少妇自拍| 蜜臀av一区二区| 在线亚洲免费视频| 国产日韩欧美在线一区| 视频一区二区中文字幕| aaa欧美日韩| 国产无遮挡一区二区三区毛片日本| 香蕉成人伊视频在线观看| 成人黄色小视频| 欧美精品一区二区三区四区| 五月天亚洲婷婷| 91亚洲永久精品| 国产无一区二区| 激情六月婷婷久久| 在线成人免费视频| 亚洲综合一区二区三区| 不卡的av网站| 亚洲国产精品黑人久久久 | 亚洲精品乱码久久久久| 国产成人精品一区二区三区网站观看| 欧美久久一二三四区| 亚洲三级理论片| 白白色 亚洲乱淫| 国产精品蜜臀在线观看| 黑人精品欧美一区二区蜜桃| 日韩欧美成人激情| 免费观看成人鲁鲁鲁鲁鲁视频| 欧美日本韩国一区| 亚洲小少妇裸体bbw| 日本久久电影网| 亚洲一区二区三区小说| 91久久精品一区二区三| 亚洲蜜臀av乱码久久精品| 99久久久久久| 亚洲欧美日韩国产综合在线| 99精品视频在线播放观看| 国产精品久久久一本精品 | 韩日欧美一区二区三区| 精品精品欲导航|