亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? demtut.m

?? 高階統計量常用函數的源代碼
?? M
字號:
%DEMTUT	  A quick tutorial introduction to Higher-Order Statistics 

echo off 

% A. Swami April 15, 1993, Nov 15, 1994. 
% Copyright (c) 1991-2001 by United Signals & Systems, Inc. 
%       $Revision: 1.5 $

%     RESTRICTED RIGHTS LEGEND
% Use, duplication, or disclosure by the Government is subject to
% restrictions as set forth in subparagraph (c) (1) (ii) of the 
% Rights in Technical Data and Computer Software clause of DFARS
% 252.227-7013. 
% Manufacturer: United Signals & Systems, Inc., P.O. Box 2374, 
% Culver City, California 90231. 
%
%  This material may be reproduced by or for the U.S. Government pursuant 
%  to the copyright license under the clause at DFARS 252.227-7013. 


clear, clc, 
echo on 

%	 What are higher-order statistics ? 
% By higher-order statistics, we mean the higher-order moments and
% certain non-linear combinations of the moments, called CUMULANTS.

% Let x(n) denote a discrete-time, real-valued stationary random process.
% We will assume that all the statistical quantities defined below,
% exist, and are finite-valued. 
% The second-order moment function is defined by 
%
%   M2(i) = E { x(n) x(n+i) } 
%
% where E denotes the statistical operation, and M2 is a mnemonic 
% for second-order moment.
% This is the familiar autocorrelation function. 
 
% Hit any key to continue 
pause
clc

% The higher-order moment functions are defined as the expected values
% of multiple products: they are multi-dimensional sequences.
% For example, the third-order moment is the expected value of a 
% triple product, 
%
%    M3(i,j) = E { x(n) x(n+i) x(n+j) } 
%
% Note that M3 is a two-dimensional sequence. 
% Similarly, the fourth-order moment is the expected value of the 
% product of four terms, namely, 
%
%    M4(i,j,k) = E { x(n) x(n+i) x(n+j) x(n+k) } 
%
% Note that M4 is a three-dimensional sequence. 

% Hit any key to continue
pause 
clc

% Cumulants are non-linear combinations of the moments of the process.
% Unlike moments, the cumulants of a process are invariant to changes 
% in the mean value of the process. 
% Hence, let us make the convenient assumption that the process has zero mean.
% The second-order cumulant, denoted by C2(i), is the auto-covariance 
% function.  
% For a zero-mean process, the third-order cumulant is also identical
% with the third-order moment of the process, i.e., 
% 
%  C2(i)   = M2(i)   = E { x(n) x(n+i) }
%  C3(i,j) = M3(i,j) = E { x(n) x(n+j) x(n+k) } 

% Things start getting a bit messy for orders larger than three
% Thus, the fourth-order cumulant is defined via 
%
% C4(i,j,k) = M4(i,j,k) - M2(i) * M2(j-k) - M2(j) * M2(k-i) - M2(k) * M2(i-j) 
%
%  Why should we worry about these multi-dimensional statistics, 
%  and their non-linear combinations ? 

% Hit any key to continue 
pause 
clc

% If x(n) is a Gaussian process, then we know that its statistics are
% completely characterized by its autocorrelation function: 
% all of its higher-order moments can be defined in terms of its
% autocorrelation function.  Thus, 

% M4(i,j,k) = E { x(n) x(n+i) x(n+j) x(n+k) } 
%           = M2(i) * M2(j-k) + M2(j) * M2(k-i) + M2(k) * M2(i-j) 

% If x(n) is non-Gaussian - and most real world signals are non-Gaussian - 
% then, it is not completely characterized by its autocorrelation function.
% The higher-order moments of the process carry information which is not
% contained in the autocorrelation function. 

% Some examples of real-world signals that are not Gaussian are: 
%   speech  - Laplacian p.d.f.'s
%   radar   - Rayleigh distributions
%   seismic - generalized Gaussian distributions 
%   sonar   - mixture distributions 
%   bio-medicine, astronomy, image processing, oceanography, plasma physics ..

% Hit any key to continue
pause
clc
% So why should I use cumulants instead of moments ?  
% Several reasons: 
% 1. The cumulants of a Gaussian process are identically
%    zero for orders greater than two, e.g., 
% 
%        C3(i,j)   = 0 ,    C4(i,j,k) = 0,     etc 
% 
% 2. If z(n) = x(n) + y(n), where x(n) is statistically independent of x(n),
%    then, the cumulant of z(n) is the sum of the cumulants of x(n) and y(n)
% e.g., 
%     C2z(i)       = C2x(i)     + C2y(i) 
%
%     C3z(i,j)     = C3x(i,j)   + C3y(i,j) 
%
%     C4z(i,j,k)   = C4x(i,j,k) + C4y(i,j,k) 
%
% where C2z denotes the second-order cumulant of process z(n), etc.
% Note that the above property holds for second- and third-order moments
% of zero-mean processes, but not for higher-order moments. 

% Hit any key to continue
pause
clc
% 3. If z(n) = s(n) + g(n), with  `signal' s(n) statistically independent of 
%    `noise' g(n), and if g(n) is Gaussian, then, 
% 
%     C2z(i)     = C2s(i) + C2g(i)
%
%     C3z(i,j)   = C3s(i,j) 
%
%     C4z(i,j,k) = C4s(i,j,k) 
%                                .... etc. 
% Note that the effects of the Gaussian noise have been suppressed in 
% the higher-order cumulant domains! 
%
% Also C3z(i,j) = C3s(i,j) holds if the noise, g(n), is 
%      symmetrically distributed (e.g., Gaussian, Laplace, Uniform, etc.)
%
% What about the signal information? 

% Hit any key to continue
pause
clc

% 4. Suppose x(n) is an i.i.d. process.
%    Then, its cumulants are non-zero only at the origin, i.e., 
%
%    C2(n)   == 0, for n not 0
%    C3(m,n) == 0,  for (m,n) not equal to (0,0), etc. 
%
%    This property is useful in analyzing linear processes. 
%
%    The moment functions do not enjoy this nice property. 

% Hit any key to continue
pause
clc

% 5. Suppose x(n) is a linear non-Gaussian process, i.e, 
%
%         x(n) = sum {over i} h(i) u(n-i) 
%
% where u(n) is an i.i.d. non-Gaussian process, then, 
% the cumulants of x(n) can be expressed in terms of impulse response h(n),
% 
%    C2x(i)      =  C2u(0)     sum {over n} h(n) h(n+i) 
%    C3x(i,j)    =  C3u(0,0)   sum {over n} h(n) h(n+i) h(n+j)
%    C4x(i,j,k)  =  C4u(0,0,0) sum {over n} h(n) h(n+i) h(n+j) h(n+k)
%
% Again, this simple property does not hold for moments. 
% If C3u(0,0) is not zero, then under mild conditions, C3x(i,j) contains 
% sufficient information to recover both the magnitude and phase of H(f), 
% the Fourier transform of h(n).
% Recall that if we use C2x(i), we can only recover the magnitude; to recover 
% the phase, we must make an ASSUMPTION, such as minimum-phase or zero-phase. 
% Using C3(i,j) or C4(i,j,k), we no longer need to make the minimum-phase
% assumption.  The problem of estimating h(n), given only x(n),
% is called `blind deconvolution', and arises in a wide variety of
% situations, for example, in seismic signal processing, in 
% communications signal processing (channel effects),  
% image restoration (blurring), and so on. 

% Hit any key to continue
pause
clc

% 6. Non-linear processes: 
% Recall that from the Wold decomposition, any finite energy, wide-sense
% stationary, strictly random process can be modeled as a linear process 
% with respect to its second-order statistics: i.e., given x(n), 
% there exists a finite energy filter, h(n), and an uncorrelated (white)
% process, u(n), with finite variance, such that 
%
%    x(n) = sum {over i} h(i) u(n-i)
%
% In other words, second-order statistics do not yield any information
% about non-linear mechanisms that may have generated x(n).

% Hit any key to continue
pause
clc

% 6. Non-linear processes:  (continued)
% Non-linear phenomena are encountered frequently in real world situations.
% For example,  in fluid mechanics, plasma physics, ocean wave couplings,
%   EEG signals, otoacoustic emissions,  rotating machinery, etc. 
% The general theory of Volterra systems describes these phenomena.
% Let us concentrate on zero-memory power law mechanisms, such as 
% the effects of a squaring operation or a cubing operation. 
%
%   y(n) = x(n) ^ 2        z(n) = x(n) ^ 3 
%
% If x(n) consists of two harmonics at frequencies f1 and f2, then y(n) 
% contains harmonics at f1, f2, f1+f2 and f1-f2.   The distortion 
% harmonics at f1+f2, and f1-f2 are said to be frequency (phase) coupled
% to the original harmonics at f1 and f2.   This phenomenon is also called
% Quadratic Phase Coupling (QPC), and is encountered in plasma physics,
% oceanography, EEG signals, otoacoustic emissions, signals generated
% by rotating machinery, etc.  
%
% The presence of quadratic or cubic phase-coupling cannot be detected 
% using the autocorrelation.  But, they can be detected and quantified
% using the third- and fourth-order cumulants. 

% Hit any key to continue
pause
clc

% 6. Non-linear processes:  (continued)
% 
% Volterra series or representations are useful to represent the input
% output mapping in a non-linear system.
% The simplest non-linear system in this representation is the so-called
% second-order Volterra model,  described by 
% 
%  y(n) =   sum (over k)   h(k) x(n-k) 
%         + sum (over k,l) q(k,l) x(n-k)x(n-l)
% 
% The quadratic kernel is usually assumed to be symmetric.
% Note that a least-squares formulation to estimate the h(k)'s, and 
% the q(k,l)'s will involve second-, third-, and fourth-order moments.
% The QPC problem is a special case where the linear part, h(k), is 0,
% the quadratic part, q(k,l), is diagonal, and x(n) is a sum of harmonics. 

% Hit any key to continue
pause
clc

% 7.  Multi-channel signals: spatially correlated noise and cross-cumulants 

% So far we have considered scalar signals.  In various real-word scenarios,
% such as in sonar or seismic, the received signal is recorded at an
% array of sensors. The signal is corrupted by noise which may be 
% both spatially as well as temporally correlated.  
% Consider the Time Delay Estimation (TDE) problem: 
% here, we want to find the difference in the arrival time of a signal
% at two different sensors (this is the basic problem in the 
% Direction of Arrival (DOA) problem, as well, except, that multiple
% sensors are used). 
% If the signals are corrupted by spatially correlated noise, second-order 
% statistics are inadequate, since we cannot discriminate the delay due to
% the signal form that due to the noise.  
 
% Hit any key to continue
pause
clc 

% 7.  Multi-channel signals: spatially correlated noise and cross-cumulants 
%     ... continued

% Let      y(n,i) = x( n+d(i) ) + g(n,i),  i = 1,2,3 .... 
%
% where x(n) is the basic signal, d(i) is the delay with respect to some
% arbitrary reference point, and g(n,i) is spatially correlated Gaussian noise
% at time n and sensor i. 
% Assume without loss of generality, that the signals and noise are zero-mean,
% and that the signal is independent of the noise.   Then, 
%
%  E { y(n,i) y(n+m,j) y(n+p,k) } = C3x( m+d(j)-d(i) , p+d(k)-d(i) ) 
% 
% cum{ y(n,i), y(n+m,j), y(n+p,k), y(n+q,l) } 
%      = C4x( m+d(j)-d(i), p+d(k)-d(i), q+d(l)-d(i) )
%      
% cum{ y(n,i), y(n+m,i), y(n+p,i), y(n+q,i) }  = C4x( m, p, q )
% Note that the spatially correlated Gaussian noise has been suppressed. 

% The relative time-delays,  d(j)-d(i) , can be recovered from the
% auto- and cross-cumulants. 

% Hit any key to continue
pause
clc


%                 The bispectrum, and the bicoherence 
% 
% The BISPECTRUM is defined as the 2-D Fourier Transform of the third-order
% cumulant, 
%           B(f1,f2) = sum {over m,n} C3(m,n) exp( -j 2 pi (m f1 + n f2) )
%
% Note that the bispectrum is a function of two frequency variables. 
% Similarly, the trispectrum is defined as the 3-D Fourier transform of the
% fourth-order cumulant, and is a function of three frequency variables. 
% 
% If x(n) is a linear process, i.e.,    x(n) = sum {over i} h(i) u(n-i)
% where u(i) is a white process, then
%    Sx(f)      = C2u(0)    H(f)  conj ( H(f) ) 
%    Bx(f1,f2)  = C3u(0,0)  H(f1) H(f2)  conj ( H(f1+f2) ) 
% where Sx(f) denotes the power spectrum of process x(n). 
%
% The bicoherence is defined by 
%  Bic (f1,f2) =  B(f1,f2) / sqrt{ S(f1) S(f2) S(f1+f2) } 
% 
% Note that the absolute value of the bicoherence is a constant for 
% the linear process x(n). 

% Hit any key to continue
pause
clc

%            The cross bispectrum and the cross-bicoherence 
% 
% The cross-cumulant of three zero-mean random processes, x(n), y(n) and z(n)
% is defined by
%                 Cxyz(m,n) = E { x(i) y(i+m) z(i+n) } 
%
% The cross-bispectrum is the 2-D Fourier Transform
% 
%    Bxyz(f1,f2) = sum {over m,n} Cxyz(m,n) exp( -j 2 pi (m f1 + n f2) )
%
% The cross-bicoherence is defined by 
%  BICxyz (f1,f2) =  Bxyz(f1,f2) / sqrt{ Sx(f1) Sy(f2) Sz(f1+f2) } 
% 
% The cross-cumulant of four random processes, w(n), x(n), y(n), and z(n)
% is defined by
% 
%  Cwxyz(k,m,n) = cum(w(i), x(i+k), y(i+m), z(i+n)) 
%               = E{ w(i)x(i+k)y(i+m)z(i+n) } - E{w(i)x(i+k)} E{y(i+m)z(i+n)}
%                -E{w(i)y(i+m)} E{x(i+k)z(i+n)} -E{w(i)z(i+n)} E{y(i+m)x(i+k)}
%
% The fourth order cross-spectrum and tricoherence are similarly defined.
% 
% Hit any key to return to the main menu
pause
echo off
clc

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
26uuu久久天堂性欧美| 日韩西西人体444www| 精品一区二区三区影院在线午夜| 亚洲综合在线视频| 一区二区在线免费| 夜夜嗨av一区二区三区网页| 国产日韩欧美a| 国产精品久久久久国产精品日日| 日本一区二区成人在线| 国产精品午夜久久| 亚洲天天做日日做天天谢日日欢| 亚洲免费观看高清完整版在线观看 | 亚洲精品成人在线| 夜夜嗨av一区二区三区| 亚洲国产精品一区二区www | 成人免费看视频| 99这里都是精品| 欧美在线你懂得| 日韩一区二区在线观看| 久久九九久久九九| 亚洲色图在线播放| 天堂va蜜桃一区二区三区漫画版| 精品一区二区三区免费观看| 国产成人一区在线| 日本高清不卡aⅴ免费网站| 欧美精品三级日韩久久| 久久综合色综合88| 亚洲美女偷拍久久| 免费欧美在线视频| 成人精品视频.| 91精品在线免费| 国产片一区二区三区| 一级中文字幕一区二区| 老司机午夜精品| 99精品1区2区| 日韩欧美资源站| 亚洲男人都懂的| 久久精品久久综合| 色婷婷av一区二区| 精品久久久久久综合日本欧美| 国产精品国模大尺度视频| 日本欧美加勒比视频| 成人av网站在线| 欧美一二三区在线| 亚洲日本中文字幕区| 久久国产免费看| 在线免费观看日韩欧美| 欧美激情一区二区三区全黄| 日日夜夜一区二区| av亚洲精华国产精华精华| 精品精品欲导航| 亚洲午夜激情av| 91美女片黄在线观看91美女| 精品国产乱码久久久久久老虎 | 制服丝袜成人动漫| 亚洲美女屁股眼交3| 精品无人码麻豆乱码1区2区| 欧美日韩亚洲另类| 亚洲最快最全在线视频| 波多野结衣欧美| 欧美国产日韩a欧美在线观看| 久久精品国产澳门| 欧美夫妻性生活| 五月婷婷综合在线| 欧美性高清videossexo| 亚洲人成在线观看一区二区| 粉嫩高潮美女一区二区三区| www久久精品| 久久机这里只有精品| 日韩视频一区在线观看| 石原莉奈一区二区三区在线观看| 欧美午夜一区二区三区| 亚洲精品视频在线| 91伊人久久大香线蕉| 亚洲欧洲一区二区三区| 国产成人精品亚洲日本在线桃色| 精品国产乱码久久久久久夜甘婷婷| 日韩电影免费一区| 在线综合亚洲欧美在线视频| 日韩国产欧美在线观看| 欧美一级在线视频| 久久精品99久久久| 精品国产一区二区国模嫣然| 六月丁香婷婷久久| 26uuu久久天堂性欧美| 成人精品一区二区三区四区| 国产精品久久午夜夜伦鲁鲁| 成人免费黄色在线| ...xxx性欧美| 欧美视频完全免费看| 日韩国产成人精品| 欧美tickle裸体挠脚心vk| 国产一区二区不卡在线| 国产精品久久久久久久久搜平片| 99re在线精品| 一区二区三区中文字幕电影 | 国产精品看片你懂得| 色播五月激情综合网| 日韩精品1区2区3区| 久久久午夜精品| 91在线免费看| 免费不卡在线观看| 中文字幕免费一区| 日本高清免费不卡视频| 麻豆91在线观看| 国产精品美女久久久久av爽李琼 | 亚洲国产精品精华液2区45| 成人激情黄色小说| 午夜久久久久久电影| 欧美r级电影在线观看| 波多野结衣亚洲| 美美哒免费高清在线观看视频一区二区 | 一区二区久久久久久| 日韩一卡二卡三卡| 99riav久久精品riav| 久久国产精品99久久人人澡| 欧美国产欧美综合| 欧美剧在线免费观看网站| 国产黄色精品视频| 亚洲综合在线第一页| 国产欧美精品在线观看| 欧美系列在线观看| 国产宾馆实践打屁股91| 丝袜诱惑亚洲看片| 中文字幕中文字幕中文字幕亚洲无线| 欧美日韩五月天| 91麻豆精品一区二区三区| 美脚の诱脚舐め脚责91| 亚洲香蕉伊在人在线观| 国产精品久久久久久久午夜片| 日韩一区二区精品葵司在线| 欧美在线不卡视频| 99re这里只有精品首页| 国产aⅴ精品一区二区三区色成熟| 午夜av区久久| 一区二区三国产精华液| 国产精品久久久久久久久快鸭| 久久综合给合久久狠狠狠97色69| 欧美视频一区在线| 色综合久久久久综合| 成人自拍视频在线| 国产一区二区三区香蕉| 日本特黄久久久高潮| 日韩电影在线观看一区| 亚洲午夜久久久久中文字幕久| 亚洲天堂a在线| 国产精品对白交换视频 | 9l国产精品久久久久麻豆| 韩国三级在线一区| 久久99精品一区二区三区三区| 亚洲国产欧美一区二区三区丁香婷 | 日韩欧美中文字幕一区| 欧美精品自拍偷拍| 欧美一区二区啪啪| 欧美日韩日本视频| 欧美视频完全免费看| 在线不卡欧美精品一区二区三区| 欧美日韩一区二区在线观看 | 热久久久久久久| 日韩精品色哟哟| 日本最新不卡在线| 蜜臀国产一区二区三区在线播放| 日本成人在线看| 蜜臀久久久99精品久久久久久| 麻豆精品一区二区综合av| 精品一区精品二区高清| 国产精品亚洲专一区二区三区| 国产精品一区免费视频| av毛片久久久久**hd| 99久久国产综合精品女不卡 | 美女高潮久久久| 国产一区二区视频在线| 成人一区在线看| 91精品福利视频| 日韩精品一区二| 日韩理论片中文av| 日本欧美韩国一区三区| 丁香网亚洲国际| 欧美性生活久久| 欧美精品一区男女天堂| 国产精品乱码一区二区三区软件| 亚洲综合区在线| 麻豆精品精品国产自在97香蕉| 丁香天五香天堂综合| 欧美系列日韩一区| 久久欧美中文字幕| 亚洲精品日韩专区silk | 国产精品久久久久久亚洲伦| 一区二区三区在线观看视频| 久久精品国产成人一区二区三区| 成人avav影音| 日韩精品中文字幕一区二区三区| 欧美国产综合色视频| 天天综合网 天天综合色| 福利一区福利二区| 欧美一区二区视频在线观看2020 | 国产成人综合亚洲网站| 91国偷自产一区二区开放时间 | 欧美视频一区二区| 国产日本欧美一区二区|