亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? satellite.tex

?? 柯老師網站上找到的
?? TEX
?? 第 1 頁 / 共 4 頁
字號:
%\documentstyle[11pt,fullpage]{article}%\setlength{\parindent}{0 in}%\setlength{\parskip}{.1in}%\setlength{\topmargin}{-0.5in}%\setlength{\textheight}{8.5in}%\begin{document}\chapter{Satellite Networking in \ns}\label{chap:satellite}This chapter describes extensions that enable the simulation of satellitenetworks in \ns.  In particular, these extensions enable \ns~to modelthe following:  i) traditional geostationary ``bent-pipe'' satellites with multiple users per uplink/downlink and asymmetric links, ii) geostationary satellites with processing payloads (either regenerative payloads or full packet switching), and iii) polar orbiting LEO constellations such as Iridium and Teledesic.  These satellite models are principally aimed at using \ns~to study networking aspects of satellite systems; in particular, MAC, link layer, routing, and transport protocols.  %\paragraph{Notice (caveat emptor)} %This code (including perhaps the APIs at OTcl level) is likely to change %over the next few months (as of this writing in June 1999) as the \ns~%developers work on integrating the structure of satellite nodes, %wireless nodes, hierarchical nodes, etc.  In particular, we plan on%modifying the code to support mixed-node topologies (e.g., simulations%consisting of traditional \ns~nodes and satellite nodes) and running existing %unicast and multicast OTcl-based routing protocols.  \nam~~is %not currently supported with these extensions.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\section{Overview of satellite models}\label{sec:satellite/overview}Exact simulation of satellite networks requires adetailed modelling of radio frequency characteristics (interference, fading),protocol interactions (e.g., interactions of residual burst errors on the link with error checking codes), and second-order orbital effects (precession,gravitational anomalies, etc.).  However, in order to study fundamentalcharacteristics of satellite networks from a {\em networking} perspective,certain features may be abstracted out.  For example, the performance ofTCP over satellite links is impacted little by using an approximate rather than detailed channel model-- performance can be characterized to first orderby the overall packet loss probability.  This is the approach taken in thissimulation model-- to create a framework for studying transport, routing, and MAC protocols in a satellite environment consisting ofgeostationary satellites or constellations of polar-orbiting low-earth-orbit (LEO) satellites.  Of course, users may extend these modelsto provide more detail at a given layer.   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\subsection{Geostationary satellites}\label{sec:satellite/overview/geo}Geostationary satellites orbit the Earth at an altitude of 22,300 miles above the equator.  The position of the satellites is specified in termsof the longitude of the nadir point (subsatellite point on the Earth'ssurface).  In practice, geostationary satellites can drift from theirdesignated location due to gravitational perturbations-- these effectsare not modelled in \ns.   Two kinds of geostationary satellites can be modelled.  Traditional``bent-pipe'' geostationary satellites are merely repeaters in orbit--all packets received by such satellites on an uplink channel are pipedthrough at RF frequencies to a corresponding downlink, and the satellite nodeis not visible to routing protocols.   Newer satellites willincreasingly use baseband processing, both to regenerate the digital signal andto perform fast packet switching on-boardthe spacecraft.  In the simulations, these satellites can be modelled more like traditional \ns~nodes with classifiers and routing agents.    Previously, users could simulate geostationary satellite links by simplysimulating a long delay link using traditional \ns~links and nodes.  Thekey enhancement of these satellite extensions with respect to geostationarysatellites is the capability to simulate MAC protocols.  Users can nowdefine many terminals at different locations on the Earth's surface andconnect them to the same satellite uplink and downlink channels, and thepropagation delays in the system (which are slightly different for eachuser) are accurately modelled.  In addition, the uplink and downlink channelscan be defined differently (perhaps with different bandwidths or error models).%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\subsection{Low-earth-orbiting satellites}\label{sec:satellite/overview/leo}\begin{figure}    \centerline{\includegraphics{sat-constellation}}    \caption{Example of a polar-orbiting LEO constellation.  This figurewas generated using the SaVi software package from the geometry center at theUniversity of Minnesota.}    \label{fig:constellation}\end{figure}Polar orbiting satellite systems, such as Iridium and the proposed Teledesic system, canbe modelled in \ns.   In particular, the simulator supports the specificationof satellites that orbit in purely circular planes, for which the neighboring planes are co-rotating.There are other non-geostationary constellation configurations  possible (e.g., Walker constellations)-- the interested user may develop newconstellation classes to simulate these other constellation types.  Inparticular, this would mainly require defining new intersatellite link handoff procedures.The following are the parameters of satellite constellations that can currentlybe simulated:\begin{itemize}        \item {\bf Basic constellation definition} Includes satellite altitude,number of satellites, number of planes, number of satellites per plane.        \item {\bf Orbits} Orbit inclination can range continuouslyfrom 0 to 180 degrees (inclination greater than 90 degrees corresponds toretrograde orbits).  Orbit eccentricity is not modeled.  Nodal precession is not modeled.  Intersatellite spacing within a given plane is fixed.  Relativephasing between planes is fixed (although some systems may not control phasingbetween planes).        \item {\bf Intersatellite (ISL) links} For polar orbiting constellations,intraplane, interplane, and crossseam ISLs can be defined.  Intraplane ISLsexist between satellites in the same plane and are never deactivated or handed off.  Interplane ISLs exist between satellites of neighboring co-rotating planes.  These links are deactivated near the poles (abovethe ``ISL latitude threshold'' in the table) because the antenna pointing mechanism cannot track these links in the polar regions.  Like intraplane ISLs,interplane ISLs are never handed off.  Crossseam ISLs may exist in a constellation between satellites in counter-rotating planes (where the planes form a so-called ``seam'' in the topology).   GEO ISLs can also bedefined for constellations of geostationary satellites.        \item {\bf Ground to satellite (GSL) links}  Multiple terminalscan be connected to a single GSL satellite channel.  GSL links for GEO satellites are static, while GSL links for LEO channels are periodically handed off as described below.          \item {\bf Elevation mask} The elevation angle above which a GSL link can be operational.  Currently, if the (LEO) satellite serving a terminaldrops below the elevation mask, the terminal searches for a new satelliteabove the elevation mask.  Satellite terminals check for handoff opportunitiesaccording to a timeout interval specified by the user.  Each terminalinitiates handoffs asynchronously; it would be possible also to definea system in which each handoff occurs synchronously in the system.\end{itemize}The following table lists parameters used for example simulation scriptsof the Iridium\footnote{Asidefrom the link bandwidths (Iridium is a narrowband system only), theseparameters are very close to what a broadband version of the Iridium systemmight look like.}  and Teledesic\footnote{These Teledesic constellation parameters are subject to change; thanks to Marie-Jose Montpetit of Teledesic for providingtentative parameters as of January 1999.  The link bandwidths are notnecessarily accurate.} systems.\begin{table}[h]\begin{center}{\tt\begin{tabular}{|c||c|c|}\hline& {\bf Iridium} & {\bf Teledesic}\\\hline\hline{\bf Altitude} & \rm 780 km& \rm 1375 km\\\hline{\bf Planes} & \rm 6& \rm 12\\\hline{\bf Satellites per plane} & \rm 11 & \rm 24\\\hline{\bf Inclination (deg)} & \rm 86.4 & \rm 84.7\\\hline{\bf Interplane separation (deg)} & \rm 31.6 & \rm 15\\\hline{\bf Seam separation (deg)} & \rm 22 & \rm 15\\\hline{\bf Elevation mask (deg)} & \rm 8.2 & \rm 40\\\hline{\bf Intraplane phasing} & \rm yes & \rm yes\\\hline{\bf Interplane phasing} & \rm yes & \rm no\\\hline{\bf ISLs per satellite} & \rm 4  & \rm 8\\\hline{\bf ISL bandwidth} & \rm 25 Mb/s  & \rm 155 Mb/s\\\hline{\bf Up/downlink bandwidth} & \rm 1.5 Mb/s  & \rm 1.5 Mb/s\\\hline{\bf Cross-seam ISLs} & \rm no & \rm yes\\\hline{\bf ISL latitude threshold (deg)} & \rm 60 & \rm 60\\\hline\end{tabular}}\end{center}\caption{Simulation parameters used for modeling a broadband version ofthe Iridium system and the proposed 288-satellite Teledesic system.Both systems are examples of polar orbiting constellations.}\end{table}\clearpage%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\section{Using the satellite extensions}\label{sec:satellite/usage}\begin{figure}    \centerline{\includegraphics{sat-spherical}}    \caption{Spherical coordinate system used by satellite nodes}    \label{fig:spherical}\end{figure}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\subsection{Nodes and node positions}\label{sec:satellite/usage/nodes}There are two basic kinds of satellite nodes:  {\em geostationary}  and {\em non-geostationary} satellite nodes.  In addition, {\em terminal} nodescan be placed on the Earth's surface.  As is explained later in Section \ref{sec:satellite/implementation},each of these three different types of nodes is actually implemented with the same \code{class SatNode} object, but with different position,handoff manager,  and link objects attached.  The position object keeps track of the satellite node's location in the coordinate system as a function of the elapsed simulation time.This position information is used to determine link propagation delays andappropriate times for link handoffs. Figure \ref{fig:spherical} illustrates the spherical coordinate system,and the corresponding Cartesian coordinate system.The coordinate system is centered at the Earth's center, and the $z$ axis coincides with the Earth's axis of rotation.  $(R,\theta,\phi) = (6378 km, 90^o, 0^o)$ corresponds to $0^o$ longitude (prime meridian) on the equator.Specifically, there is one class of satellite node \code{Class Node/SatNode},to which one of three types of \code{Position} objects may be attached.  Each \code{SatNode} and \code{Position} object is a split OTcl/C++ object,but most of the code resides in C++.  The following types of position objects exist: \begin{itemize}\item \code{Position/Sat/Term} A terminal is specified by its latitude andlongitude.  Latitude ranges from $[-90, 90]$ and longitude ranges from$[-180, 180]$, with negative values corresponding to south and west, respectively.  As simulation time evolves, the terminals move alongwith the Earth's surface.  The  Simulator instproc \code{satnode} can be used to create a terminal with an attached position object as follows:\begin{program}$ns satnode terminal $lat $lon\end{program}\item \code{Position/Sat/Geo} A geostationary satellite is specified by its longitude above the equator.  As simulation time evolves, the geostationarysatellite moves through the coordinate system with the same orbital periodas that of the Earth's rotation.  The longitude ranges from $[-180,180]$degrees.  The Simulator instproc \code{satnode} can be used to create a geostationary satellite with an attached position object as follows:\begin{program}$ns satnode geo $lon\end{program}\item \code{Position/Sat/Polar} A polar orbiting satellite has a purelycircular orbit along a fixed plane in the coordinate system; the Earthrotates underneath this orbital plane, so there is both an east-west anda north-south component to the track of a polar satellite's footprint onthe Earth's surface.  Strictly speaking, the polar position object canbe used to model the movement of any circular orbit in a fixed plane;  we use the term ``polar'' here because we later use such satellites to model polar-orbiting constellations.Satellite orbits are usually specified by six parameters:  {\em altitude},

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品欧美综合在线| 欧美色图激情小说| 国产精品网站一区| 91丨九色丨尤物| 亚洲欧美乱综合| 欧美性一级生活| 全部av―极品视觉盛宴亚洲| 日韩欧美国产三级| 成人免费av在线| 亚洲一区在线观看视频| 欧美日韩不卡在线| 精品一区二区免费在线观看| 国产亚洲一区二区三区四区| 91原创在线视频| 亚洲一二三四久久| 日韩午夜激情视频| 成人黄动漫网站免费app| 亚洲精选一二三| 欧美一级二级三级乱码| 国产福利91精品一区二区三区| 成人免费一区二区三区在线观看| 欧美性xxxxxx少妇| 狠狠色丁香婷综合久久| 亚洲免费三区一区二区| 6080yy午夜一二三区久久| 国产精品一线二线三线| 亚洲男人都懂的| 精品日产卡一卡二卡麻豆| 色哟哟欧美精品| 久久99国产乱子伦精品免费| 国产精品福利一区二区| 欧美电影影音先锋| 成人精品国产免费网站| 日韩**一区毛片| 中文字幕在线不卡视频| 51午夜精品国产| 成人手机电影网| 免费在线观看成人| 亚洲免费av在线| 久久久久久黄色| 欧美乱熟臀69xxxxxx| 波多野结衣亚洲一区| 美女一区二区久久| 亚洲一区二区视频在线观看| 久久久综合视频| 欧美一区二区在线不卡| 99久久精品费精品国产一区二区| 日本欧美加勒比视频| 亚洲免费观看视频| 国产精品毛片高清在线完整版| 日韩一区二区电影| 欧美图片一区二区三区| 91在线精品秘密一区二区| 精品亚洲porn| 免费成人美女在线观看.| 亚洲一区影音先锋| 亚洲欧美日韩小说| 国产精品天美传媒| 久久综合久久99| 日韩视频中午一区| 欧美一区二区性放荡片| 欧美浪妇xxxx高跟鞋交| 欧美亚洲愉拍一区二区| av激情亚洲男人天堂| 懂色av一区二区三区蜜臀| 狠狠色狠狠色综合| 久久99久国产精品黄毛片色诱| 婷婷一区二区三区| 亚洲超丰满肉感bbw| 亚洲一区二区三区在线| 亚洲精品网站在线观看| 亚洲欧美另类图片小说| 亚洲色欲色欲www| 国产精品国产三级国产普通话蜜臀 | 日韩欧美一级在线播放| 91精品国产综合久久精品app| 欧美色爱综合网| 欧美最猛黑人xxxxx猛交| 色婷婷av一区二区三区大白胸| 色综合天天综合给合国产| 91麻豆精品秘密| 日本乱码高清不卡字幕| 欧美性色综合网| 欧美久久久久免费| 欧美一二三在线| 精品99一区二区| 国产偷v国产偷v亚洲高清| 中文在线一区二区| ...xxx性欧美| 亚洲国产色一区| 日日嗨av一区二区三区四区| 美脚の诱脚舐め脚责91| 国产一区二区三区四区五区美女| 国产一区二区三区在线看麻豆| 国产大陆精品国产| av激情亚洲男人天堂| 欧美日韩久久久一区| 日韩欧美成人一区二区| 国产亚洲欧美在线| 亚洲人亚洲人成电影网站色| 亚洲小说春色综合另类电影| 久久99久久久久久久久久久| 国产一区二区视频在线| 91老师片黄在线观看| 欧美日韩国产三级| 久久人人97超碰com| 亚洲视频香蕉人妖| 日韩不卡一二三区| 国产精品一区二区久激情瑜伽| 91在线精品一区二区| 在线91免费看| 国产目拍亚洲精品99久久精品| 亚洲欧美一区二区三区国产精品| 天堂精品中文字幕在线| 国产成人欧美日韩在线电影| 在线精品亚洲一区二区不卡| 精品乱人伦小说| 日韩美女视频19| 久久精品国产99久久6| 91在线视频免费观看| 精品三级av在线| 亚洲综合在线五月| 国产综合色视频| 欧美无乱码久久久免费午夜一区| 精品国产乱码久久久久久夜甘婷婷| 亚洲青青青在线视频| 狠狠色综合色综合网络| 欧美日韩免费高清一区色橹橹| 国产欧美中文在线| 天堂影院一区二区| 91在线国内视频| 久久久久88色偷偷免费| 日韩一区精品字幕| 91在线观看污| 欧美激情一区不卡| 久久福利资源站| 欧美日本在线视频| 自拍偷拍亚洲激情| 国产 欧美在线| 精品日本一线二线三线不卡| 性欧美大战久久久久久久久| 9l国产精品久久久久麻豆| 精品国产伦理网| 看国产成人h片视频| 欧美日韩一二三区| 一区二区三区精品在线观看| 国产一区二区在线观看视频| 91麻豆精品国产91久久久更新时间| 亚洲欧美日本在线| 成人一区二区三区中文字幕| 日韩欧美黄色影院| 三级不卡在线观看| 欧美日韩一区中文字幕| 亚洲免费资源在线播放| 97se亚洲国产综合自在线| 中文字幕 久热精品 视频在线| 狠狠色丁香久久婷婷综合_中| 日韩免费电影一区| 五月天欧美精品| 欧美日韩一级大片网址| 亚洲成人黄色小说| 欧美色视频在线观看| 亚洲第一福利一区| 51午夜精品国产| 麻豆精品久久精品色综合| 日韩区在线观看| 激情综合网av| 国产午夜精品美女毛片视频| 国产精品99久久久久久久vr| 国产亚洲午夜高清国产拍精品| 国产精品一区二区在线观看不卡 | 中文久久乱码一区二区| 福利一区在线观看| 国产精品全国免费观看高清| 成人黄色国产精品网站大全在线免费观看| 国产丝袜欧美中文另类| 国产精品羞羞答答xxdd| 国产精品视频第一区| 97se狠狠狠综合亚洲狠狠| 亚洲欧洲av另类| 欧美在线视频你懂得| 日韩国产一区二| 欧美videofree性高清杂交| 国产精品一区二区在线看| 国产精品久久久久久久久免费樱桃 | 丝瓜av网站精品一区二区| 91麻豆精品国产91久久久更新时间| 紧缚奴在线一区二区三区| 国产亚洲人成网站| 色狠狠桃花综合| 麻豆成人av在线| 国产精品热久久久久夜色精品三区| 97se亚洲国产综合自在线| 婷婷中文字幕一区三区| 精品国产电影一区二区| 成人不卡免费av| 午夜av区久久| 中文字幕av一区二区三区免费看| 91国内精品野花午夜精品| 免费在线观看精品|