亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? demgltst.m

?? 高階譜分析工具箱
?? M
字號:
%DEMGLTST HOSA Toolbox Demo:  Tests for Gaussianity and Linearity 

echo off 

% A. Swami April 15, 1993
% Copyright (c) 1991-2001 by United Signals & Systems, Inc. 
%       $Revision: 1.5 $

%     RESTRICTED RIGHTS LEGEND
% Use, duplication, or disclosure by the Government is subject to
% restrictions as set forth in subparagraph (c) (1) (ii) of the 
% Rights in Technical Data and Computer Software clause of DFARS
% 252.227-7013. 
% Manufacturer: United Signals & Systems, Inc., P.O. Box 2374, 
% Culver City, California 90231. 
%
%  This material may be reproduced by or for the U.S. Government pursuant 
%  to the copyright license under the clause at DFARS 252.227-7013. 


clear, clc, 
echo on 

%             TESTING for GAUSSIANITY and LINEARITY 
%
% How do we know whether `real' data are non-Gaussian or non-linear? 
% 
% The basic idea is that if the signal is Gaussian, its third (fourth ...)
% order cumulants must be identically zero.  In practice, sample estimates
% of cumulants will not be exactly zero: so, we need a test
% to determine whether or not estimated quantities are significantly 
% different from zero in a statistical sense. 
% For a linear non-Gaussian process, we saw that the absolute value
% of the bicoherence is a constant.   Again, sample estimates of the 
% bicoherence will not be constant, and we need a test to
% determine whether the non-constancy is statistically significant. 

% The HOSA Toolbox offers the routine GLSTAT to test whether a given signal
% is non-Gaussian, and if so, whether it is also linear. 

% Hit any key to continue
pause
clc 

% Decision Statistics for Linearity and Gaussianity Tests 
%
load gldat 
% In this routine, the bispectrum of the process is estimated and 
% smoothed;   tests are then conducted to see whether the bispectral
% values are significantly different from zero.   The basic idea is that
% estimates of the bispectrum are asymptotically complex normal;  hence, the
% energy in the bispectrum is chi-squared distributed;  the number of 
% degrees of freedom depend upon the FFT length and the smoothing window. 
%
% In the Gaussianity test, 
% The null hypothesis is that the data have zero bispectrum ("Gaussian") 
% The computed probability of false alarm (PFA) value is the probability that 
% the value of the chi-squared r.v. with the indicated degrees of freedom will
% exceed the computed test statistic. 
% The PFA value indicates the false alarm probability in accepting the 
% alternate hypothesis, that the data have non-zero bispectrum. 
% Usually, the null hypothesis is accepted if PFA is greater than 0.05 
%    (i.e., it is risky to accept the alternate hypothesis). 

% Hit any key to continue
pause

% In the Linearity test, the inter-quartile range of the estimated
% bicoherence is computed;  a quantity, 'lambda' proportional to the
% mean value of the bicoherence is also computed;  the theoretical
% inter-quartile range of a chi-squared r.v. with two degrees of freedom
% and non-centrality parameter 'lambda' is then computed. 
% The linearity hypothesis should be rejected if the estimated and
% theoretical inter-quartile ranges are very different from one another.

% Hit any key to continue
pause 

% We will use a smoothing parameter (cparm) value of 0.51 and an FFT length
% of 256 in the following examples.  Each of the sequences to be tested 
% has 512 samples. 

      cparm = 0.51;  nfft = 256; 

% hit any key to continue 
pause 
clc

% We will apply the test to an i.i.d. Gaussian sequence, g. 

    [sg,sl] = glstat(g, cparm, nfft); 

% Since the PFA is high, we accept the null (Gaussian) hypothesis; 
% the linearity test is also based on the bispectrum; if the bispectrum is
% zero, the bicoherence will be a constant, equal to zero, and we cannot
% conclude, based on the bispectrum, whether or not the data are linear; 
% hence, the linearity test is meaningless in this case. 

% hit any key to continue  ............... 
pause 

% We will apply the test to an i.i.d. sequence, u, with uniform p.d.f.

    [sg,sl] = glstat(u, cparm, nfft); 

% Since the PFA is high, we accept the null (zero bispectrum) hypothesis;
% the linearity test is also based on the bispectrum; if the bispectrum is
% zero, the bicoherence will be a constant, equal to zero, and we cannot
% conclude, based on the bispectrum, whether or not the data are linear; 
% hence, the linearity test is meaningless in this case. 

% hit any key to continue  ............... 
pause 

% We will apply the test to an i.i.d. exponential sequence, e 

    [sg,sl] = glstat(e, cparm, nfft); 

% Since the PFA is very small, we accept the alternate hypothesis, 
%     i.e., the data are accepted as being non-Gaussian. 
% The linearity test is meaningful in this case. 
% The estimated and theoretical inter-quartile ranges are close to each other.
% Hence, we accept the linearity test as well. 

% hit any key to continue  ............... 
pause 

%  Sequence x was obtained by passing e through a linear filter. 
%  Since sequence  e  was accepted as non-Gaussian and linear, 
%     we expect x to be accepted as non-Gaussian and linear as well. 
%  Let us apply the tests to the sequence e. 

    [sg,sl] = glstat(x, cparm, nfft); 

% Since the PFA is very small, we accept the alternate hypothesis
%     i.e., the data are accepted as being non-Gaussian. 
% The linearity test is meaningful in this case. 
% The estimated and theoretical inter-quartile ranges are close to each other.
% Hence, we accept the linearity test as well. 

% hit any key to continue  ............... 
pause 

% Sequence z was obtained by passing the sequence x through a non-linearity, 
%   z = x.^3  
% Let us apply the tests to z 

     [sg,sl] = glstat(z, cparm, nfft); 

% Since the PFA is small, we accept the non-Gaussian hypothesis 
% Since the estimated and theoretical inter-quartile ranges are very 
% different, we cannot accept the linearity hypothesis. 

% hit any key to continue  ............... 
pause 

% We will apply the test to an i.i.d. Laplacian sequence, l  

    [sg,sl] = glstat(l, cparm, nfft); 

% Since the PFA is high, we accept the null (zero bispectrum) hypothesis;
% the linearity test is also based on the bispectrum; if the bispectrum is
% zero, the bicoherence will be a constant, equal to zero, and we cannot
% conclude, based on the bispectrum, whether or not the data are linear; 
% hence, the linearity test is meaningless in this case. 

% Hit any key to return to the main menu .... 
pause 
echo off
clc

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久色.com| 亚洲激情男女视频| 在线免费观看视频一区| 日韩中文字幕麻豆| 中文字幕精品三区| 欧美电视剧在线观看完整版| 不卡的av电影| 国产乱子伦视频一区二区三区 | 精品成人一区二区三区四区| 91麻豆免费在线观看| 国产精品一区二区在线观看不卡 | 亚洲综合色成人| 国产精品免费aⅴ片在线观看| 日韩午夜在线影院| 欧美视频在线播放| 色婷婷久久99综合精品jk白丝 | 99热精品国产| 国产盗摄精品一区二区三区在线| 奇米影视一区二区三区小说| 一区二区三区国产豹纹内裤在线| 中文字幕av一区二区三区免费看| 亚洲精品一区二区三区香蕉| 欧美视频一二三区| 在线观看亚洲成人| 日本韩国精品在线| 色婷婷综合久久久久中文一区二区| 国产v日产∨综合v精品视频| 国内精品伊人久久久久av影院| 日韩精品欧美精品| 午夜影院久久久| 亚洲成av人片在www色猫咪| 亚洲日本乱码在线观看| 中文字幕一区二区视频| 中日韩免费视频中文字幕| 久久久99精品久久| 精品久久久久av影院| 日韩欧美一区二区视频| 日韩三级免费观看| 91精品国产综合久久久久久| 在线成人免费观看| 91精品国产综合久久久久久漫画| 欧美肥妇free| 欧美一区二区三区在线观看| 制服视频三区第一页精品| 91精品一区二区三区在线观看| 欧美日本在线播放| 日韩一区二区视频| 一区二区三区在线观看视频| 一区二区三区精品视频在线| 一区二区三区在线观看欧美| 亚洲综合视频在线| 亚洲 欧美综合在线网络| 丝袜诱惑制服诱惑色一区在线观看 | 色av综合在线| 欧美日韩和欧美的一区二区| 91精选在线观看| 精品久久人人做人人爰| 国产日韩欧美综合在线| 欧美国产一区二区| 亚洲视频一区二区在线观看| 一区二区三区波多野结衣在线观看 | 99久久久久久| 欧美日韩视频在线第一区| 91精品国产综合久久蜜臀| 欧美成人免费网站| 国产精品美女久久久久aⅴ国产馆| 亚洲欧洲综合另类| 三级不卡在线观看| 国产不卡视频在线播放| 色偷偷成人一区二区三区91 | 欧美激情一区在线观看| 一区二区在线观看免费视频播放| 亚洲一区二区三区小说| 久久99精品国产麻豆婷婷洗澡| 懂色av一区二区夜夜嗨| 欧美丝袜丝交足nylons图片| 欧美v国产在线一区二区三区| 国产精品视频第一区| 五月天久久比比资源色| 国产一区二区三区免费| 91丨porny丨在线| 日韩欧美一级在线播放| 最新中文字幕一区二区三区| 日韩精品视频网| 不卡的av中国片| 日韩欧美一区中文| 综合久久久久综合| 久久99久久久久久久久久久| 99久久精品费精品国产一区二区| 欧美猛男男办公室激情| 国产精品久久久久影视| 丝袜美腿高跟呻吟高潮一区| 成人高清av在线| 日韩一卡二卡三卡| 亚洲欧美成aⅴ人在线观看 | 色综合天天做天天爱| 日本欧美在线观看| 成人午夜激情在线| 51久久夜色精品国产麻豆| 亚洲蜜桃精久久久久久久| 国产一区二区不卡老阿姨| 欧美日韩三级一区二区| 中文字幕中文乱码欧美一区二区| 免费成人深夜小野草| 欧美午夜理伦三级在线观看| 中文无字幕一区二区三区 | 一区二区三区日韩欧美精品| 国产精品99久久久久久宅男| 欧美精品日韩综合在线| 一区二区中文字幕在线| 精品一区二区三区日韩| 欧美日韩一级黄| 亚洲免费在线视频| 成人午夜免费电影| 国产亚洲精品资源在线26u| 日本亚洲三级在线| 欧美日韩高清一区二区三区| 亚洲免费在线观看视频| www.欧美精品一二区| 久久精品在这里| 国产精品一区专区| 精品久久人人做人人爰| 日韩av中文字幕一区二区| 欧美日韩免费不卡视频一区二区三区| 国产精品国产自产拍高清av| 国产精品一区二区你懂的| 精品区一区二区| 久久国产日韩欧美精品| 日韩精品一区二区三区四区| 毛片一区二区三区| 日韩一级完整毛片| 久久精品久久精品| 精品不卡在线视频| 国产在线精品免费av| 久久香蕉国产线看观看99| 激情av综合网| 久久精品日韩一区二区三区| 国产精品1024| 欧美国产丝袜视频| 成人手机在线视频| 国产精品久久久久国产精品日日| 国产大陆亚洲精品国产| 国产欧美日韩麻豆91| 国产白丝网站精品污在线入口| 国产欧美日韩三区| 97精品国产露脸对白| 一区二区三区在线影院| 欧美日韩国产综合一区二区| 午夜亚洲国产au精品一区二区| 欧美日韩精品一区视频| 免费在线看成人av| 久久蜜桃一区二区| 国产69精品久久久久777| 国产精品久久久久久久久免费樱桃| 波多野结衣中文字幕一区二区三区| 亚洲天堂免费看| 欧美午夜片在线看| 久久国产精品第一页| 国产色爱av资源综合区| 99国产精品久久久久久久久久久 | 亚洲欧美日韩精品久久久久| 91久久精品网| 免费视频一区二区| 欧美高清在线一区二区| 日本久久电影网| 免费在线成人网| 国产精品久久久久9999吃药| 欧洲一区二区三区在线| 精品影视av免费| 亚洲视频免费观看| 日韩精品综合一本久道在线视频| 国产成人免费高清| 亚洲一区二区三区小说| 欧美成va人片在线观看| 不卡区在线中文字幕| 视频一区视频二区在线观看| 国产婷婷色一区二区三区| 91福利在线导航| 国产精品88av| 亚洲成人午夜影院| 国产欧美日韩精品在线| 欧美日韩电影在线播放| 高清不卡一区二区在线| 亚洲国产综合91精品麻豆| 久久先锋影音av鲁色资源| 欧美在线你懂得| 成人午夜精品一区二区三区| 五月婷婷综合激情| 国产精品久久久久影院亚瑟| 日韩片之四级片| 欧美性受xxxx黑人xyx性爽| 国产一区欧美二区| 天堂午夜影视日韩欧美一区二区| 亚洲国产高清不卡| 日韩一级免费观看| 色婷婷av一区二区三区大白胸| 狠狠狠色丁香婷婷综合激情| 一区二区三区精品视频| 在线亚洲人成电影网站色www| 午夜欧美2019年伦理|