亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? matlab官方網站中的用于圖像融合技術的contourlet變換源代碼
??
字號:
Contourlet Hidden Markov Tree (HMT) toolbox (ver. 1.0)

Duncan D.-Y. Po, June 2003

This directory contains the MATLAB files that fit a hidden Markov tree model
to the contourlet coefficients of images. The files require the contourlet
Toolbox by Minh N. Do, which can be downloaded from here:

http://www.ifp.uiuc.edu/~minhdo/software/

In addition, the Image Processing Toolbox is also required.

Assumptions:
1. For all the functions, the image is assumed to be stored as 8-bit unsigned 
integers (uint8).
2. For all the functions, the image is assumed to be square.

There are 4 main functions in this toolbox: train HMT model, denoise, texture 
retrieval, and generate data according to HMT model.

1.) Training
file: pdfbtrainimagethmt (Pyramidal directional filter bank train image tied
                          hidden Markov tree)
This file trains an HMT model to fit an image. For example, if we have an 
image 'lena.gif' in directory '/dir', then

	[model, stateprob] = pdfbtrainimagethmt('/dir/lena', 'gif', '', 0.01)     

trains an HMT model on that image to within an error in model parameter of 0.01
per tree. The resulting model is in the output 'model'. By default, this 
file uses a contourlet transform with '9-7' pyramidal filter and 'pkva' 
directional filter, decomposing the image to 4 scales with 4 directions in the
two coarser scales and 8 directions in the two finer scales. The HMT model 
assumes the contourlet coefficients to be distributed between two states 
and in each state the coefficients have a mean of zero. These attributes can 
all be modified by modifying the first few lines of this file. The output
'stateprob' contains the probabilities for each coefficient to be in each of
the two states. This output is useful for denoising.
If we have an existing model 'mymodel' already in memory and we want to 
start the training using this model, then we can use

	[model, stateprob] = pdfbtrainimagethmt('/dir/lena', 'gif', 'mymodel', 0.01)  

This can be used to speed up the training process, if the existing model is
available. 
For other available pyramidal and directional filter names for the contourlet 
transform, see functions dfilter and pfilters, respectively, in the 
contourlet toolbox.



2.) Denoising
file: pdfbdenoiseimage (Pyramidal Directional Filter Bank Denoise Image)
This file takes in a noisy image and denoises the image based on a given HMT model
and an estimated noise power. For example, if we have an image noisylena.gif in 
path /dir/, and estimate the noise power to be 0.01 (noise power is normalized to
lie between 0 and 1 always), then we can first train an HMT model on the image 
(see (1) above) to obtain its model and stateprob. Then we can denoise the image
as follows   

	cleanimage = pdfbdenoiseimage( model, stateprob, 0.01, '', '/dir/noisylena', 'gif')

The output cleanimage contains the denoised image. By default, this file assumes
the HMT model is trained using the '9-7' pyramidal filter and the 'pkva' 
directional filter. Other filters can be used by changing the first two lines 
of this file. 



3.) Texture Retrieval
file: pdfbclassify_texture (Pyramidal Directional Filter Bank Classify Texture)
This file takes a query texture image and search through a texture image database 
to find the most similar texture images. 
For example, we have a database of 64 texture images in tdb:

	tdb = {'texture1', 'texture2', ..., 'texture64'}

The image files of these textures (texture1.gif, texture2.gif, ..., texture64.gif)
are located in the path /tdir/. Suppose the HMT models of these 64 textures are 
already stored in the path /mdir/. Now we want to search through this database to find
the most similar textures to a texture65.gif. We can do this by

	kld = pdfbclassify_texture('texture65', 'gif', tdb, '/tdir', '/mdir', 0)

Now suppose we don't have the HMT models of the database textures. We can still perform
texture retrieval and the program will train the HMT models for the database textures
and save them. Suppose we want to save the database texture HMT models in the directory
/mdir2/. Then

	kld = pdfbclassify_texture('texture65', 'gif', tdb, '/tdir', '/mdir2', 1)

Note that the output kld is an array of Kublick-Liebler distance between the query
texture and every texture in the database in the order specified in tdb. i



4.) Generate Data
file: pdfbgentdata (Pyramidal Directional Filter Bank Generate Tree Data)
This file uses an existing model to generate random data in tree structure. 
For example we have an HMT model 'hmtmodel' in memory and we want to generate a random
HMT with root level size of 64, then

	tree = pdfbgentdata(hmtmodel, 64)


Notes:
There are also other utility files in this toolbox. Their usage can be found by 
typing 'help <function name>' in matlab prompt. They are:
contourlet.m
contourlet2tree.m
contournc.m
dump_pdfbimagemodel.m
generate_model.m
load_pdfbimagemodel.m
pdfbcalc_imagekld.m
pdfbcreate_equiv_models.m
pdfbflip_model.m
pdfbtestall_imagekld.m
pdfbtrainthmt.m
tree2contourlet.m
type3detransform.m
type3transform.m
type4detransform.m
type4transform.m         

There are also several mex files that might need to be recompiled, depending on 
the system. This can be easily done by typing on MATLAB command window
>> mex <filename>.cc pdfbthmt.cc tree.cc matrix.cc utils.cc

pdfbcalc_KLD
pdfbest_KLD
pdfbgen_tdata
pdfbprotrain_thmt
pdfbtrain_thmt  
dump_pdfbmodel_to_file
load_pdfbmodel_from_file

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
成人一二三区视频| 日韩精品成人一区二区三区| 国产精品乡下勾搭老头1| 欧美一二三四在线| 日本欧美韩国一区三区| 日韩欧美在线影院| 国产在线国偷精品产拍免费yy| 久久久久久免费毛片精品| 国产乱码精品一区二区三区忘忧草 | 国产91富婆露脸刺激对白| 国产色91在线| 色婷婷综合五月| 亚洲福利电影网| 91精品啪在线观看国产60岁| 久久99精品久久久| 亚洲国产精品av| 色呦呦一区二区三区| 性做久久久久久免费观看欧美| 91精品国产综合久久蜜臀| 美女视频网站黄色亚洲| 国产日产欧产精品推荐色| 91免费版在线| 婷婷综合在线观看| 欧美成人a∨高清免费观看| 粉嫩绯色av一区二区在线观看| 亚洲欧美综合另类在线卡通| 欧美人妖巨大在线| 国产精品18久久久久久久久| 亚洲天堂福利av| 777久久久精品| 成人av资源在线观看| 亚洲国产精品久久不卡毛片| 久久综合成人精品亚洲另类欧美| 91啪九色porn原创视频在线观看| 日韩精品久久理论片| 国产精品久久久久久一区二区三区| 在线观看av一区| 国产在线一区二区综合免费视频| 日韩久久一区二区| 欧美不卡一区二区三区四区| 91久久香蕉国产日韩欧美9色| 美女爽到高潮91| 一区二区三区精品久久久| 精品国产乱码久久久久久蜜臀 | 99久久精品免费看| 免费美女久久99| 亚洲伦理在线精品| 亚洲一级二级在线| 欧美mv日韩mv国产网站app| 91啪亚洲精品| 国产精品99久久久久| 亚洲成av人**亚洲成av**| 国产女人18毛片水真多成人如厕| 欧美高清视频不卡网| 99久久精品费精品国产一区二区| 蜜桃视频一区二区三区| 亚洲最大的成人av| 中文字幕巨乱亚洲| 2021久久国产精品不只是精品| 精品视频一区 二区 三区| 北条麻妃国产九九精品视频| 国产一区二区三区蝌蚪| 三级不卡在线观看| 亚洲高清视频中文字幕| 亚洲欧美电影一区二区| 中文字幕不卡在线播放| 久久网站热最新地址| 91精品国产91综合久久蜜臀| 欧美日韩在线一区二区| 91豆麻精品91久久久久久| 成人黄页在线观看| 顶级嫩模精品视频在线看| 国产在线精品不卡| 国产九九视频一区二区三区| 久久99精品久久久久久国产越南| 麻豆精品一区二区三区| 日本不卡一二三区黄网| 日本一不卡视频| 免费一区二区视频| 日韩av高清在线观看| 日韩综合小视频| 秋霞午夜鲁丝一区二区老狼| 日日夜夜精品视频天天综合网| 亚洲福利视频一区| 日韩精品成人一区二区三区| 日本大胆欧美人术艺术动态| 天天av天天翘天天综合网| 手机精品视频在线观看| 午夜av区久久| 欧美aa在线视频| 久久激情五月婷婷| 国产一区二区调教| 国产成人自拍网| 精品国内二区三区| 日韩精品一区二区三区三区免费 | 另类小说视频一区二区| 久久超碰97中文字幕| 极品少妇一区二区三区精品视频| 国模娜娜一区二区三区| 国产不卡视频在线观看| 暴力调教一区二区三区| 91成人免费电影| 91精品国产色综合久久 | 久久蜜桃一区二区| 国产精品另类一区| 亚洲裸体在线观看| 日韩高清在线观看| 国产精一区二区三区| 99久久99久久久精品齐齐| 欧美在线观看你懂的| 日韩欧美的一区二区| 久久久99精品久久| 亚洲一区在线观看免费| 久久国产福利国产秒拍| 成人小视频免费在线观看| 欧美亚洲尤物久久| 精品国产91亚洲一区二区三区婷婷| 国产亚洲制服色| 亚洲国产视频一区二区| 精品无码三级在线观看视频| 91小视频在线观看| 欧美一卡在线观看| 中文字幕亚洲一区二区va在线| 亚洲丰满少妇videoshd| 国产伦精品一区二区三区免费| 色婷婷综合激情| 亚洲精品一区二区三区蜜桃下载 | 91麻豆精品国产91久久久久久| 2023国产精品视频| 亚洲一区影音先锋| 国产高清视频一区| 欧美精品精品一区| 国产精品第五页| 精品制服美女丁香| 在线视频一区二区三| 久久久无码精品亚洲日韩按摩| 亚洲图片自拍偷拍| 成人做爰69片免费看网站| 91精品在线免费观看| 亚洲乱码国产乱码精品精小说| 激情亚洲综合在线| 欧美日韩日日夜夜| 国产精品免费aⅴ片在线观看| 老司机免费视频一区二区| 欧美在线观看18| 中文字幕在线观看不卡| 国产在线视频一区二区| 欧美一区二区大片| 亚洲国产精品精华液网站| av午夜精品一区二区三区| 精品粉嫩超白一线天av| 天堂va蜜桃一区二区三区 | 美女国产一区二区三区| 欧美性猛交xxxx黑人交| 中文字幕中文字幕在线一区| 国产在线视频一区二区三区| 日韩午夜电影在线观看| 性感美女极品91精品| 日本道免费精品一区二区三区| 国产精品久久久久一区二区三区共 | 日韩免费电影网站| 日韩中文字幕麻豆| 欧美群妇大交群中文字幕| 依依成人精品视频| 色婷婷av一区二区三区之一色屋| 亚洲欧洲日本在线| a亚洲天堂av| 中文字幕一区二区在线观看| 成人av网站在线观看| 国产午夜亚洲精品午夜鲁丝片 | 国产麻豆精品一区二区| 精品国产乱码久久久久久图片| 久久黄色级2电影| 精品福利视频一区二区三区| 日本麻豆一区二区三区视频| 欧美一区二区久久| 久久精品99国产精品日本| 精品精品欲导航| 国产精品456| 亚洲欧洲性图库| 99国产精品国产精品毛片| 日韩理论片一区二区| 在线观看av一区| 日韩精品色哟哟| 精品国产亚洲一区二区三区在线观看| 蜜桃一区二区三区在线观看| 欧美r级在线观看| 国产大片一区二区| 综合激情网...| 欧洲另类一二三四区| 日韩二区三区在线观看| 欧美大片一区二区| 粉嫩高潮美女一区二区三区 | 日欧美一区二区| 精品国产污污免费网站入口 | 亚洲综合视频网| 欧美一区欧美二区| 国产一区二区三区视频在线播放| 国产欧美精品日韩区二区麻豆天美| eeuss鲁片一区二区三区|