亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? art_learn.asv

?? ART 神經網絡Matlab代碼。包括數據產生函數
?? ASV
字號:
function [new_art_network, categorization] = ART_Learn(art_network, data)
% ART_Learn    Trains an ART network on the given input data.
%    [NEW_ART_NETWORK, CATEGORIZATION] = ART_Learn(ART_NETWORK, DATA)
%    This function trains an ART network on the given input data. Each sample
%    of the data is presented to the network, which categorizes and learns 
%    for each sample. The function returns a new ART network which has learned
%    the input data, along with the categorization of each sample. If the
%    maximum number of categories is reached and an element should be classified
%    by a new category that cannot be created, the category is set to -1.
% 
%    The input parameters are as follows:
%    The ART_NETWORK is the ART network to be trained. It should be created
%    with ART_Create_Network(). The DATA is the training data to be presented
%    to the network. It is a matrix of size NumFeatures-by-NumSamples. 
%
%    The return parameters are as follows:
%    The NEW_ART_NETWORK is a new ART network which has learned the input data.
%    The CATEGORIZATION is a vector of size NumSamples that holds the 
%    category in which the ART network placed each sample.


% Make sure the user specifies the input parameters.
if(nargin ~= 2)
    error('You must specify both input parameters.');
end

% Make sure that the data is appropriate for the given network.
[numFeatures, numSamples] = size(data);
if(numFeatures ~= art_network.numFeatures)
    error('The data does not contain the same number of features as the network.');
end

% Make sure the vigilance is within the (0, 1] range.
if((art_network.vigilance <= 0) | (art_network.vigilance > 1))
    error('The vigilance must be within the range (0, 1].');
end

% Make sure that the number of epochs is a positive integer.
if(art_network.numEpochs < 1)
    error('The number of epochs must be a positive integer.');
end

% Set up the return variables.
new_art_network = {};
categorization = ones(1, numSamples);


% Go through the data once for every epoch.
for epochNumber = 1:art_network.numEpochs
        
    % This variable will allow us to keep up with the total
    % network change due to learning.
    % Initialize the number of changes to 0.
    numChanges = 0;
    
    % Classify and learn on each sample.
    for sampleNumber = 1:numSamples
        
        % Get the current data sample.
        currentData = data(:, sampleNumber);
        
        % Activate the categories for this sample.
        % This is equivalent to bottom-up processing in ART.
        bias = art_network.bias;
        categoryActivation = ART_Activate_Categories(currentData, art_network.weight, bias);
        
        % Rank the activations in order from highest to lowest.
        % This will allow us easier access to step through the categories.
        [sortedActivations, sortedCategories] = sort(-categoryActivation);
        
        % Go through each category in the sorted list looking for the best match.
        % This is equivalent to bottom-up--top-down processing in ART.
        resonance = 0;
        match = 0;
        numSortedCategories = length(sortedCategories);
        currentSortedIndex = 1;
        while(~resonance)
            
            % If there are no categories yet, we must create one.
            if(numSortedCategories == 0)
                resizedWeight = ART_Add_New_Category(art_network.weight);
                [resizedWeight, weightChange] = ART_Update_Weights(currentData, resizedWeight, ...
                                                                   1, art_network.learningRate);
                art_network.weight = resizedWeight;
                art_network.numCategories = art_network.numCategories + 1;
                categorization(1, sampleNumber) = 1;
                numChanges = numChanges + 1;
                resonance = 1;
                break;
            end
            
            % Get the current category based on the sorted index.
            currentCategory = sortedCategories(currentSortedIndex);
            
            % Get the current weight vector from the sorted category list.
            currentWeightVector = art_network.weight(:, currentCategory);
            
            % Calculate the match given the current data sample and weight vector.
            match = ART_Calculate_Match(currentData, currentWeightVector);
            
            % Check to see if the match is greater than the vigilance.
            if((match > art_network.vigilance) | (match >= 1))
                % If so, the current category should code the input.
                % Therefore, we should update the weights and induce resonance.
                [art_network.weight, weightChange] = ART_Update_Weights(currentData, art_network.weight, ...
                                                                        currentCategory, art_network.learningRate);
                categorization(1, sampleNumber) = currentCategory;
                
                % If there was a change, increment our counter.
                if(weightChange == 1)
                    numChanges = numChanges + 1;
                end
                
                % Otherwise, choose the next category in the sorted category list.
                % If the current category is the last in the list, make sure that
                % the maximum number of categories has not been reached. If so,
                % assign the input a category of -1. If the maximum has not been
                % reached, create a new category for the input, update the weight
                resonance = 1;            
            elses, 
                % and induce resonance.
                if(currentSortedIndex == numSortedCategories)
                    if(currentSortedIndex == art_network.maxNumCategories)
                        categorization(1, sampleNumber) = -1;
                        resonance = 1;
                    else
                        resizedWeight = ART_Add_New_Category(art_network.weight);
                        [resizedWeight, weightChange] = ART_Update_Weights(currentData, resizedWeight, ...
                                                                           currentSortedIndex + 1, art_network.learningRate);
                        art_network.weight = resizedWeight;
                        art_network.numCategories = art_network.numCategories + 1;
                        categorization(1, sampleNumber) = currentSortedIndex + 1;
                        numChanges = numChanges + 1;
                        resonance = 1;
                    end
                else
                    currentSortedIndex = currentSortedIndex + 1;
                end            
            end
        end 
    end
    
    % If the network didn't change at all during the last epoch,
    % then we've reached equilibrium. Thus, we can stop training.
    if(numChanges == 0)
        break;
    end

end


fprintf('The number of epochs needed was %d\n', epochNumber);

% Fill the new network with the appropriate values.
new_art_network = art_network;

return

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
色八戒一区二区三区| av中文字幕在线不卡| 亚洲欧美另类综合偷拍| 中文字幕乱码久久午夜不卡 | 肉色丝袜一区二区| 亚洲欧美电影院| 亚洲视频免费观看| 中文字幕一区在线观看| 亚洲视频一区二区在线观看| 中文字幕一区二区三区四区 | 欧美日韩成人在线| 欧美猛男超大videosgay| 欧美精品粉嫩高潮一区二区| 在线不卡欧美精品一区二区三区| 91精品国产乱码| 精品国精品自拍自在线| 26uuu亚洲| 国产精品乱子久久久久| 亚洲日本在线视频观看| 一级特黄大欧美久久久| 日韩精品免费专区| 激情六月婷婷久久| 成人一区二区三区中文字幕| 一区二区三区在线视频免费| 欧美精品一区二区三区视频| 精品国产3级a| 国产精品久久久久久久久图文区| 亚洲一区二区三区视频在线播放| 男人的j进女人的j一区| 国产99久久久久| 欧美日韩中文字幕一区| 精品毛片乱码1区2区3区| 国产精品久久久久影院老司| 日本在线不卡视频| 成人激情综合网站| 欧美高清视频不卡网| 国产亚洲欧美色| 亚洲成a天堂v人片| 丁香婷婷深情五月亚洲| 欧美日韩一区视频| 中文字幕欧美日韩一区| 日本中文在线一区| 91在线无精精品入口| 日韩一区二区麻豆国产| 亚洲欧美日韩一区二区三区在线观看| 日本在线不卡视频一二三区| 91在线码无精品| 欧美va亚洲va在线观看蝴蝶网| 亚洲品质自拍视频网站| 狠狠色丁香婷婷综合久久片| 欧美精品在线观看播放| 中文字幕在线观看一区| 国产一区二区三区高清播放| 欧美巨大另类极品videosbest | 亚洲一区在线观看视频| 国产不卡视频一区| 日韩欧美高清一区| 亚洲成av人片| 色婷婷综合久久久| 国产精品久久久一区麻豆最新章节| 丝袜a∨在线一区二区三区不卡| av成人免费在线观看| 久久综合九色综合97_久久久| 天天综合色天天综合| av在线这里只有精品| 欧美激情中文字幕一区二区| 日韩激情中文字幕| 欧美性大战久久| 亚洲视频电影在线| www.久久精品| 日韩码欧中文字| 99这里都是精品| 国产精品久久午夜夜伦鲁鲁| 国产成人午夜精品5599| 精品国偷自产国产一区| 激情都市一区二区| 精品久久久久久无| 国产一区二区三区| 国产亚洲视频系列| 成人黄色a**站在线观看| 国产精品亲子伦对白| 不卡电影一区二区三区| 亚洲视频一区在线| 欧美网站一区二区| 日韩激情中文字幕| 久久亚洲精精品中文字幕早川悠里| 激情六月婷婷久久| 国产精品视频第一区| 97久久超碰精品国产| 亚洲自拍偷拍网站| 911精品国产一区二区在线| 日韩电影在线免费| 精品欧美一区二区三区精品久久 | eeuss鲁片一区二区三区在线观看| 亚洲国产精品精华液ab| 99九九99九九九视频精品| 亚洲精品国产精华液| 欧美日韩成人一区| 国产美女精品人人做人人爽| 中文字幕一区二区日韩精品绯色| 色综合一个色综合亚洲| 日韩制服丝袜先锋影音| 久久在线观看免费| 一本久久a久久免费精品不卡| 视频一区二区欧美| 国产午夜久久久久| 日韩一区二区中文字幕| 麻豆91在线观看| 欧美极品少妇xxxxⅹ高跟鞋| 欧美在线观看一区二区| 免费在线观看一区| 国产欧美综合在线| 欧美日韩免费一区二区三区 | 久久九九全国免费| 日本韩国一区二区三区视频| 麻豆精品蜜桃视频网站| 国产精品久久久久久久久免费丝袜| 欧美日韩中字一区| 高清在线不卡av| 免费在线观看一区| 一区二区三区在线视频免费观看| 欧美v亚洲v综合ⅴ国产v| 99精品黄色片免费大全| 久久精品99久久久| 亚洲午夜激情网站| 国产精品久久久久一区二区三区共| 制服.丝袜.亚洲.另类.中文| 97se狠狠狠综合亚洲狠狠| 国产永久精品大片wwwapp| 亚洲国产精品人人做人人爽| 国产精品午夜免费| 精品99久久久久久| 91精品视频网| 欧美日韩一区不卡| 91一区二区在线| 风间由美一区二区三区在线观看 | 日韩你懂的在线观看| 日韩西西人体444www| 99精品1区2区| 高清久久久久久| 国产在线精品一区在线观看麻豆| 日韩电影在线观看一区| 一区二区三区电影在线播| 中文字幕久久午夜不卡| 国产午夜亚洲精品不卡| 欧美精品一区二区三区很污很色的| 69堂精品视频| 欧美高清www午色夜在线视频| 欧美午夜精品久久久久久超碰| a亚洲天堂av| 91色在线porny| 色8久久精品久久久久久蜜| eeuss鲁片一区二区三区在线观看 eeuss鲁片一区二区三区在线看 | 日本一区中文字幕| 天天综合网 天天综合色| 亚洲成人一区二区在线观看| 亚洲综合在线五月| 一区二区三区蜜桃网| 一区二区三国产精华液| 亚洲色图自拍偷拍美腿丝袜制服诱惑麻豆| 中文字幕av资源一区| 久久久激情视频| 国产精品嫩草影院com| 国产精品久久久久毛片软件| 国产精品的网站| 亚洲欧美日韩国产综合| 一片黄亚洲嫩模| 蜜桃av噜噜一区二区三区小说| 免费看黄色91| 国内久久精品视频| 国产精品99久久久久久似苏梦涵 | 成人免费看视频| 91日韩在线专区| 欧美久久久久久久久中文字幕| 日韩一区二区麻豆国产| 精品av综合导航| 日韩一区中文字幕| 午夜精品久久久久久久久| 美女爽到高潮91| 粗大黑人巨茎大战欧美成人| 色综合久久中文综合久久牛| 欧美日韩你懂得| 精品电影一区二区| 亚洲精品中文字幕在线观看| 日韩精彩视频在线观看| 色综合天天综合网天天狠天天| 欧美在线你懂得| 精品国精品国产| 一区二区三区在线免费播放| 免费高清在线一区| av在线不卡观看免费观看| 欧美人妖巨大在线| 中文成人av在线| 日韩精品视频网| 97精品国产露脸对白| 精品少妇一区二区三区日产乱码 | 日韩av高清在线观看| 成人国产精品免费观看动漫| 555www色欧美视频| 中文字幕一区二区在线播放|