亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? art_learn.m

?? ART 神經網絡Matlab代碼。包括數據產生函數
?? M
字號:
function [new_art_network, categorization] = ART_Learn(art_network, data)
% ART_Learn    Trains an ART network on the given input data.
%    [NEW_ART_NETWORK, CATEGORIZATION] = ART_Learn(ART_NETWORK, DATA)
%    This function trains an ART network on the given input data. Each sample
%    of the data is presented to the network, which categorizes and learns 
%    for each sample. The function returns a new ART network which has learned
%    the input data, along with the categorization of each sample. If the
%    maximum number of categories is reached and an element should be classified
%    by a new category that cannot be created, the category is set to -1.
% 
%    The input parameters are as follows:
%    The ART_NETWORK is the ART network to be trained. It should be created
%    with ART_Create_Network(). The DATA is the training data to be presented
%    to the network. It is a matrix of size NumFeatures-by-NumSamples. 
%
%    The return parameters are as follows:
%    The NEW_ART_NETWORK is a new ART network which has learned the input data.
%    The CATEGORIZATION is a vector of size NumSamples that holds the 
%    category in which the ART network placed each sample.


% Make sure the user specifies the input parameters.
if(nargin ~= 2)
    error('You must specify both input parameters.');
end

% Make sure that the data is appropriate for the given network.
[numFeatures, numSamples] = size(data);
if(numFeatures ~= art_network.numFeatures)
    error('The data does not contain the same number of features as the network.');
end

% Make sure the vigilance is within the (0, 1] range.
if((art_network.vigilance <= 0) | (art_network.vigilance > 1))
    error('The vigilance must be within the range (0, 1].');
end

% Make sure that the number of epochs is a positive integer.
if(art_network.numEpochs < 1)
    error('The number of epochs must be a positive integer.');
end

% Set up the return variables.
new_art_network = {};
categorization = ones(1, numSamples);


% Go through the data once for every epoch.
for epochNumber = 1:art_network.numEpochs
        
    % This variable will allow us to keep up with the total
    % network change due to learning.
    % Initialize the number of changes to 0.
    numChanges = 0;
    
    % Classify and learn on each sample.
    for sampleNumber = 1:numSamples
        
        % Get the current data sample.
        currentData = data(:, sampleNumber);
        
        % Activate the categories for this sample.
        % This is equivalent to bottom-up processing in ART.
        bias = art_network.bias;
        categoryActivation = ART_Activate_Categories(currentData, art_network.weight, bias);
        
        % Rank the activations in order from highest to lowest.
        % This will allow us easier access to step through the categories.
        [sortedActivations, sortedCategories] = sort(-categoryActivation);
        
        % Go through each category in the sorted list looking for the best match.
        % This is equivalent to bottom-up--top-down processing in ART.
        resonance = 0;
        match = 0;
        numSortedCategories = length(sortedCategories);
        currentSortedIndex = 1;
        while(~resonance)
            
            % If there are no categories yet, we must create one.
            if(numSortedCategories == 0)
                resizedWeight = ART_Add_New_Category(art_network.weight);
                [resizedWeight, weightChange] = ART_Update_Weights(currentData, resizedWeight, ...
                                                                   1, art_network.learningRate);
                art_network.weight = resizedWeight;
                art_network.numCategories = art_network.numCategories + 1;
                categorization(1, sampleNumber) = 1;
                numChanges = numChanges + 1;
                resonance = 1;
                break;
            end
            
            % Get the current category based on the sorted index.
            currentCategory = sortedCategories(currentSortedIndex);
            
            % Get the current weight vector from the sorted category list.
            currentWeightVector = art_network.weight(:, currentCategory);
            
            % Calculate the match given the current data sample and weight vector.
            match = ART_Calculate_Match(currentData, currentWeightVector);
            
            % Check to see if the match is greater than the vigilance.
            if((match > art_network.vigilance) | (match >= 1))
                % If so, the current category should code the input.
                % Therefore, we should update the weights and induce resonance.
                [art_network.weight, weightChange] = ART_Update_Weights(currentData, art_network.weight, ...
                                                                        currentCategory, art_network.learningRate);
                categorization(1, sampleNumber) = currentCategory;
                
                % If there was a change, increment our counter.
                if(weightChange == 1)
                    numChanges = numChanges + 1;
                end
                
                resonance = 1;            
            else
                % Otherwise, choose the next category in the sorted category list.
                % If the current category is the last in the list, make sure that
                % the maximum number of categories has not been reached. If so,
                % assign the input a category of -1. If the maximum has not been
                % reached, create a new category for the input, update the weights, 
                % and induce resonance.
                if(currentSortedIndex == numSortedCategories)
                    if(currentSortedIndex == art_network.maxNumCategories)
                        categorization(1, sampleNumber) = -1;
                        resonance = 1;
                    else
                        resizedWeight = ART_Add_New_Category(art_network.weight);
                        [resizedWeight, weightChange] = ART_Update_Weights(currentData, resizedWeight, ...
                                                                           currentSortedIndex + 1, art_network.learningRate);
                        art_network.weight = resizedWeight;
                        art_network.numCategories = art_network.numCategories + 1;
                        categorization(1, sampleNumber) = currentSortedIndex + 1;
                        numChanges = numChanges + 1;
                        resonance = 1;
                    end
                else
                    currentSortedIndex = currentSortedIndex + 1;
                end            
            end
        end 
    end
    
    % If the network didn't change at all during the last epoch,
    % then we've reached equilibrium. Thus, we can stop training.
    if(numChanges == 0)
        break;
    end

end


fprintf('The number of epochs needed was %d\n', epochNumber);

% Fill the new network with the appropriate values.
new_art_network = art_network;

return

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩激情一区二区三区| 国产成人欧美日韩在线电影| 国产精品国产三级国产| 欧美精品一区二区精品网| 日韩精品一区二区三区老鸭窝| 欧美三级韩国三级日本三斤 | 国产精品免费久久| 欧美激情一二三区| 国产精品欧美一级免费| 国产精品高清亚洲| 国产精品久久久久影院色老大| 国产精品美女久久久久久久网站| 国产精品美女久久久久久久久久久 | 国产精品天干天干在观线| 国产女人水真多18毛片18精品视频| 久久久91精品国产一区二区精品 | 91视频com| 91国产福利在线| 欧美一区二区视频观看视频| 日韩精品专区在线影院观看| 欧美tickle裸体挠脚心vk| 2023国产精华国产精品| 国产欧美日韩综合精品一区二区| 国产精品天美传媒| 午夜日韩在线电影| 精品一区二区三区欧美| 国产成a人亚洲精| 91美女视频网站| 欧美精品亚洲一区二区在线播放| 91麻豆精品国产自产在线观看一区| 精品少妇一区二区三区免费观看 | 亚洲美女少妇撒尿| 奇米影视一区二区三区小说| 国产精品99精品久久免费| 91女神在线视频| 91精品久久久久久久久99蜜臂| 久久一夜天堂av一区二区三区| 亚洲欧洲精品一区二区三区不卡| 亚洲国产成人tv| 国产白丝精品91爽爽久久| 91免费版在线| 欧美精品一区二区三区视频| 一区二区三区91| 国产又粗又猛又爽又黄91精品| 色综合天天综合狠狠| 欧美不卡123| 亚洲一区二区视频| 成人免费看黄yyy456| 欧美福利电影网| 在线观看日韩电影| 欧美国产欧美综合| 99精品久久99久久久久| 亚洲制服丝袜在线| 欧美第一区第二区| 丰满少妇久久久久久久| 中文字幕在线播放不卡一区| 在线免费视频一区二区| 天堂一区二区在线免费观看| 精品日本一线二线三线不卡| 成人av网站免费观看| 亚洲亚洲精品在线观看| 精品国产乱码久久久久久闺蜜| 懂色av一区二区夜夜嗨| 亚洲最色的网站| 日韩欧美国产综合在线一区二区三区 | 欧美一区二区三区视频在线观看 | 欧洲国产伦久久久久久久| 性做久久久久久免费观看欧美| 精品国产亚洲在线| 色悠悠久久综合| 黑人精品欧美一区二区蜜桃| 亚洲视频在线一区| 欧美一区二区三区四区在线观看 | 美国av一区二区| 最新成人av在线| 日韩一区二区电影网| 成人免费视频视频在线观看免费| 亚洲一区电影777| 中文字幕成人网| 欧美日韩1区2区| 成人午夜激情在线| 日本一不卡视频| 樱花影视一区二区| 久久亚洲欧美国产精品乐播| 欧美无人高清视频在线观看| 成人午夜av在线| 九色|91porny| 午夜视频久久久久久| 国产精品久久久久久久久图文区 | 韩国av一区二区三区在线观看| 一区二区三区精品久久久| 久久精品在线观看| 日韩欧美电影一区| 欧美人体做爰大胆视频| 91免费国产在线| 国产成人午夜精品影院观看视频 | 成人国产精品免费观看视频| 国产原创一区二区| 日本 国产 欧美色综合| 亚洲国产一区二区三区| 亚洲日本中文字幕区| 久久精品亚洲精品国产欧美kt∨| 91精品国产黑色紧身裤美女| 欧美日韩另类一区| 欧美主播一区二区三区| 91最新地址在线播放| 大白屁股一区二区视频| 国产黑丝在线一区二区三区| 九九在线精品视频| 久久成人免费电影| 日本午夜精品视频在线观看| 三级影片在线观看欧美日韩一区二区| 亚洲一区二区三区四区五区黄 | 亚洲三级电影全部在线观看高清| 国产精品视频第一区| 欧美国产一区在线| 中文字幕不卡一区| 国产精品国产三级国产a| 国产精品青草综合久久久久99| 国产精品无圣光一区二区| 国产精品情趣视频| 综合久久久久久| 亚洲线精品一区二区三区八戒| 亚洲综合av网| 日韩av网站在线观看| 狂野欧美性猛交blacked| 精品在线观看免费| 国产a区久久久| 一本一本大道香蕉久在线精品 | 亚洲va天堂va国产va久| 五月天欧美精品| 蜜臀久久久久久久| 国产精品1024| 亚洲欧美一区二区三区孕妇| 欧美自拍丝袜亚洲| av电影在线不卡| 国产91精品精华液一区二区三区| 日本欧美一区二区| 亚洲成av人**亚洲成av**| 亚洲婷婷国产精品电影人久久| 久久婷婷成人综合色| 日韩一区二区电影在线| 91精品国产综合久久精品app| 日韩av在线播放中文字幕| 国产大陆a不卡| 色av成人天堂桃色av| 欧美一区三区二区| 国产亚洲午夜高清国产拍精品| 综合久久给合久久狠狠狠97色| 亚洲1区2区3区视频| 国产一区二区三区蝌蚪| 色婷婷国产精品| 欧美va亚洲va国产综合| 亚洲情趣在线观看| 免费成人在线影院| 99麻豆久久久国产精品免费| 欧美日韩久久久一区| 国产亚洲精品aa午夜观看| 亚洲国产日产av| 国产盗摄一区二区| 欧美精品vⅰdeose4hd| 国产精品视频线看| 日韩高清中文字幕一区| www.日韩在线| 精品欧美黑人一区二区三区| 亚洲综合视频在线| 国产91高潮流白浆在线麻豆| 国产亚洲1区2区3区| 亚洲国产日韩a在线播放性色| 国产福利一区二区三区视频| 欧美日韩dvd在线观看| 亚洲视频一区在线| 国产精品一区二区在线观看网站| 精品视频一区二区三区免费| 国产精品丝袜一区| 国产一级精品在线| 欧美一区二视频| 亚洲国产一区二区视频| heyzo一本久久综合| 26uuu久久综合| 美女视频黄 久久| 欧美日韩亚洲综合在线| 亚洲欧美日韩国产一区二区三区 | 欧美成人三级在线| 日韩中文字幕麻豆| 在线一区二区三区四区五区 | 成人av资源在线观看| 久久夜色精品国产噜噜av| 日本女优在线视频一区二区| 欧美性色综合网| 亚洲综合一区在线| 91香蕉视频污| 亚洲猫色日本管| 99久久久久免费精品国产| 欧美激情综合五月色丁香小说| 国产酒店精品激情| 久久久噜噜噜久噜久久综合| 韩国精品免费视频| 久久久久久久久久看片| 国产综合色产在线精品|