?? art_categorize.m
字號:
function categorization = ART_Categorize(art_network, data)
% ART_Categorize Uses an ART network to categorize the given input data.
% CATEGORIZATION = ART_Categorize(ART_NETWORK, DATA)
% This function uses an ART network to categorize the given input data with
% the specified vigilance parameter. Each sample of the data is presented to
% the network, which categorizes each sample. The function returns the
% categorization of each sample. If the categorization of the sample requires
% that a new category be created, the category for that sample is set to -1.
%
% The input parameters are as follows:
% The ART_NETWORK is the trained ART network. It should be created with
% ART_Create_Network(). The DATA is the categorization data to be presented
% to the network. It is a matrix of size NumFeatures-by-NumSamples.
%
% The return parameters are as follows:
% The CATEGORIZATION is a vector of size NumSamples that holds the
% category in which the ART network placed each sample.
% Make sure the user specifies the input parameters.
if(nargin ~= 2)
error('You must specify both input parameters.');
end
% Make sure that the data is appropriate for the given network.
[numFeatures, numSamples] = size(data);
if(numFeatures ~= art_network.numFeatures)
error('The data does not contain the same number of features as the network.');
end
% Make sure the vigilance is within the (0, 1] range.
if((art_network.vigilance <= 0) | (art_network.vigilance > 1))
error('The vigilance must be within the range (0, 1].');
end
% Set up the return variables.
categorization = ones(1, numSamples);
% Classify and learn on each sample.
for sampleNumber = 1:numSamples
% Get the current data sample.
currentData = data(:, sampleNumber);
% Activate the categories for this sample.
bias = art_network.bias;
categoryActivation = ART_Activate_Categories(currentData, art_network.weight, bias);
% Rank the activations in order from highest to lowest.
% This will allow us easier access to step through the categories.
[sortedActivations, sortedCategories] = sort(-categoryActivation);
% Go through each category in the sorted list looking for the best match.
resonance = 0;
match = 0;
numSortedCategories = length(sortedCategories);
currentSortedIndex = 1;
while(~resonance)
% Get the current category based on the sorted index.
currentCategory = sortedCategories(currentSortedIndex);
% Get the current weight vector from the sorted category list.
currentWeightVector = art_network.weight(:, currentCategory);
% Calculate the match given the current data sample and weight vector.
match = ART_Calculate_Match(currentData, currentWeightVector);
% Check to see if the match is greater than the vigilance.
if((match > art_network.vigilance) | (match >= 1))
% If so, the current category codes the input.
% Therefore, we should induce resonance.
categorization(1, sampleNumber) = currentCategory;
resonance = 1;
else
% Otherwise, choose the next category in the sorted category list.
% If the current category is the last in the list, set the
% category for the return value as -1 and induce resonance.
if(currentSortedIndex == numSortedCategories)
categorization(1, sampleNumber) = -1;
resonance = 1;
else
currentSortedIndex = currentSortedIndex + 1;
end
end
end
end
return
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -