亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? exhaustive search.htm

?? 介紹各種經(jīng)典算法的代碼。說明詳細(xì)
?? HTM
?? 第 1 頁(yè) / 共 5 頁(yè)
字號(hào):
are unable to say exactly why. And if we can't rigorously formulate an 
invariant, and prove its validity, chances are intuition will mislead us once in 
a while. 
<P>Because of the irregular structure characteristic of state spaces for which 
we use exhaustive search, it is not easy to formulate pruning insight in such a 
way that a program can act on it. As a test field for experiments, we have 
chosen King and Pawn chess endgames. There is much expert knowledge about this 
domain, explained in excellent books, and there are databases of exact values to 
compare against when there are only a few Pawns on the board. 
<P>The peculiar difficulty of King (K) and Pawn (P) endgames comes from the fact 
that Pawns can be promoted to any other piece: Queen (Q), Rook (R), Bishop (B), 
Knight (N). Thus an exhaustive analysis of KP endgames with a total of p Ps 
potentially calls upon all endgames with 2 Ks and p pieces of the right color. 
But the vast majority of KP endgames are decided soon after (or even before) a P 
promotion, because the material balance typically changes drastically - one 
party has a Q, the other does not. Thus, storing all the support databases of 
other piece endgames is an extremely expensive overhead when compared to their 
rare use. 
<P>We are experimenting with simple and often safe heuristics of the type: In a 
KP endgame, if Black promotes a P to a Q, and within x plies can prevent White 
from promoting one of its Ps, Black wins. This particular heuristic has 
well-known exceptions, such as when a White P on the seventh rank ensures a 
draw. Thus it is supplemented by other heuristics that, jointly, capture 
elementary chess lore about KP endgames. 
<P>The reduction in the size of state spaces and compute time effected by 
heuristics that obviate the need for support databases is drastic indeed, as the 
following examples show. KPPKP stands for the state space of endgames where 
White has 2 Ps and Black has 1 P. <BR><BR>
<TABLE border=1>
  <TBODY>
  <TR>
    <TD>State spaces
    <TD>
    <TD>Pawns only 
  <TR>
    <TD>KK + 2 pieces:
    <TD>350 M states
    <TD>KPKP:
    <TD>4.5 M states 
  <TR>
    <TD>KK + 3 pieces:
    <TD>100 G states
    <TD>KPPKP:
    <TD>250 M states 
  <TR>
    <TD>KK + 4 pieces:
    <TD>30 T states
    <TD>KPPKPP:
    <TD>3 G states </TR></TBODY></TABLE>
<P>Comparisons of exact databases with simple heuristics for KPKP combined with 
a 2-4 ply search on P promotion have shown that the latter contain about 2.5% 
errors. This is merely one data point along the trade-off curve between accuracy 
on one hand, and space and time on the other. Improved heuristics, larger 
databases, more forward search at the fringe of P promotion are just some of the 
parameters to play with in an attempt to push exhaustive search beyond the 
boundaries wherein exact calculation is feasible. <A name=7.2></A>
<H4>7.2. Enumeration of Maximally Elastic Graphs (A. Marzetta)</H4>
<P>We study weighted graphs that can be embedded in Euclidean space in such a 
way as to preserve an edge's weight as distance between its two endpoints. Such 
questions arise in a variety of layout problems. In automatic graph drawing, for 
example, vertices are to be placed in the plane so as to approximate desired 
pairwise distances. The analogous 3-d problem arises in the distance geometry 
approach to molecular modeling, where edge weights are approximate distance 
measurements. The concept of elastic embeddability <A 
href="http://nobi.ethz.ch/febi/ex_search_paper/paper.html#Nievergelt95">[Nievergelt 
95]</A> is designed to deal with distances subject to error. Elastic graphs are 
related to generically rigid graphs known in structural engineering. In 
particular, maximally elastic graphs are the same as minimally rigid (isostatic) 
graphs <A href="http://nobi.ethz.ch/febi/ex_search_paper/paper.html#Tay95">[Tay 
95]</A>. Although graphs isostatic in the plane are well understood, the 
analogous problem in 3 or more dimensions has generated interesting conjectures 
that might be settled by a search for counter examples. <A name=7.3></A>
<H4>7.3. Primes in Intervals of Fixed Length (R. Gasser, J. Waldvogel)</H4>
<P>Although the distribution of prime numbers has been studied empirically and 
theoretically for centuries, it remains an inexhaustible source of interesting 
conjectures to be attacked by search. Let <EM>P(x)</EM> denote the number of 
primes &lt;= x. It follows from the prime number theorem: P(x) ~ x / ln(x), that 
the average density of primes decreases with increasing x. Specifically, let 
R(x) = max(P(y+x)) - P(y), where the maximum is over all y &gt;= 0, denote the 
maximally possible number of primes in an interval (y, y+x] of length x &gt; 0. 
Thus one might expect R(x) &lt;= P(x). But although the average decreases, the 
peak densities do not - surprisingly, they even increase in places. Using sieve 
techniques, <A 
href="http://nobi.ethz.ch/febi/ex_search_paper/paper.html#GW95">[Gasser, 
Waldvogel 95]</A> prove, among other results, that for all x,10 &lt; x &lt; 
1416, R(x) &lt; P(x) as expected. But x = 3250 is the first known counter 
example where R(x) &gt; P(x). Apparently, the densest clusters of primes in an 
interval of fixed length x occur starting at huge values of y. <A name=7.4></A>
<H4>7.4. Quo Vadis Exhaustive Search?</H4>
<P>Brute-force techniques, as the name reveals, have never been considered 
elegant instruments in a computer scientist's toolbox. When used by novice 
programmers, the computer science community would automatically assume, often 
correctly, that an algorithms expert could obviously have designed a much more 
efficient program. But brute-force techniques have survived as a research niche 
for half century because a few top experts have always been intrigued by this 
unconventional approach to problem solving. And the complexity of problems 
solved has slowly but steadily grown in proportion to the power of available 
hardware. 
<P>The question is whether exhaustive search will remain a niche, used primarily 
for exotic topics such as games or number theory, or become a mainstream 
approach to a wide variety of applications. Instead of answering this question, 
let us close with one argument against and one in favor of an expanded role. 
<P>As stated in section 1, the effectiveness or ``intelligence'' of a search 
procedure is due mostly to problem-specific knowledge, not to differences 
between one or another general-purpose search procedure. But to the extent that 
a search uses properties specific to one problem to prune the state space, it 
becomes less of a brute-force technique by definition. From this point of view, 
exhaustive search applies to problems we do not yet understand well, and is 
forever being replaced by selective search as knowledge advances. 
<P>The argument for a more important role of brute-force techniques consist of 
two simple observations. We will never run out of problems whose structure we 
understand so poorly that exhaustive search is the only available approach. 
Second, computer science will continue to be technology-driven as it has been 
for decades; raw computing power will continue to increase, in particular with 
increased use of distributed and parallel computation. Thus the issue will 
always be present whether or not newly available raw power can solve new 
problems. 
<P>In any case, brute-force techniques are part of the computer science culture. 
Basic techniques of exhaustive search belong in introductory courses on 
algorithms and data structures along with the more traditional polynomial-time 
algorithms. <BR><BR><BR><A name=ref></A>
<H3>References</H3>
<DL><A name=Allen89></A>
  <DT>[Allen 89] 
  <DD>J. D. Allen: A Note on the Computer Solution of Connect-Four, Heuristic 
  Programming in Artificial Intelligence 1: the first computer Olympiad (eds. 
  D.N.L. Levy and D.F. Beal), Ellis Horwood, Chichester, England. (1989) 134-135 
  <A name=Allis94></A>
  <DT>[Allis 94] 
  <DD>L.V. Allis: Searching for Solutions in Games and Artificial Intelligence, 
  Doctoral dissertation, University of Limburg, Maastricht, (1994). <A 
  name=Appell77></A>
  <DT>[Appell 77] 
  <DD>K. Appell and W. Haken: The Solution of the Four-Color-Map Problem, Sci. 
  American. (Oct. 1977) 108-121, <A name=Avis92></A>
  <DT>[Avis 92] 
  <DD>D. Avis and K. Fukuda: Reverse Search for Enumeration, Report, U. Tsukuba. 
  To appear, Discrete Applied Math. <A name=Berlekamp82></A>
  <DT>[Berlekamp 82] 
  <DD>E. Berlekamp, J.H. Conway and R.K. Guy: Winning Ways for your Mathematical 
  Plays, Academic Press, London, England. <A name=Culberson94></A>
  <DT>[Culberson 94] 
  <DD>J. Culberson and J. Schaeffer: Efficiently Searching the 15-Puzzle, 
  internal report, University of Alberta, Edmonton, Canada. <A 
name=Gasser90></A>
  <DT>[Gasser 90] 
  <DD>R. Gasser: Applying Retrograde Analysis to Nine Men's Morris, Heuristic 
  Programming in Artificial Intelligence 2: the second computer Olympiad (eds. 
  D.N.L. Levy and D.F. Beal), Ellis Horwood, Chichester, England. (1990) 161-173 
  <A name=Gasser91></A>
  <DT>[Gasser 91] 
  <DD>R. Gasser: Endgame Database Compression for Humans and Machines, Heuristic 
  Programming in Artificial Intelligence 3: the third computer Olympiad (eds. 
  H.J. van den Herik and L.V. Allis), Ellis Horwood, Chichester, England. (1990) 
  180-191 <A name=Gasser94></A>
  <DT>[Gasser 94] 
  <DD>R. Gasser, J. Nievergelt: Es ist entschieden: Das Muehlespiel ist 
  unentschieden, Informatik Spektrum, 17, No.5, Okt 1994. 314-317 <A 
  name=Gasser95></A>
  <DT>[Gasser 95] 
  <DD>R. Gasser: Harnessing Computational Resources for Efficient Exhaustive 
  Search, Doctoral dissertation, ETH Zurich, 1995. <A name=GW95></A>
  <DT>[Gasser, Waldvogel 95] 
  <DD>R. Gasser, J. Waldvogel: Primes in intervals of fixed length, in 
  preparation. <A name=Hansson92></A>
  <DT>[Hansson 92] 
  <DD>O. Hansson, A. Mayer and M. Yung: Criticizing Solutions to Relaxed Models 
  Yields Powerful Admissible Heuristics, Information Sciences 63. (1992) 207-227 
  <A name=Herik86></A>
  <DT>[Herik 86] 
  <DD>H.J. van den Herik and I.S. Herschberg: A Data Base on Data Bases, ICCA 
  Journal 9(1), 29. <A name=Horgan93></A>
  <DT>[Horgan 93] 
  <DD>J. Horgan: The Death of Proof, Scientific American. (1993) 74-82 <A 
  name=Knuth75></A>
  <DT>[Knuth 75] 
  <DD>D. E. Knuth and R. W. Moore: An analysis of Alpha-Beta Pruning, Artificial 
  Intelligence, Vol. 6. (1975) 293-326 <A name=Kociemba92></A>
  <DT>[Kociemba 92] 
  <DD>H. Kociemba: Close to God's Algorithm, Cubism for Fun 28. (1992) 10-13 <A 
  name=Korf85></A>
  <DT>[Korf 85] 
  <DD>R.E. Korf: Depth-first Iterative Deepening: An Optimal Admissible Tree 
  Search, Artificial Intelligence, Vol. 27. 97-109 <A name=Lake94></A>
  <DT>[Lake 94] 
  <DD>R. Lake, J. Schaeffer and P. Lu: Solving Large Retrograde Analysis 
  Problems Using a Network of Workstations, internal report, University of 
  Alberta, Edmonton, Canada, 199

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产欧美日韩麻豆91| 久久精品国产在热久久| 久久久久久夜精品精品免费| 欧美日韩在线观看一区二区 | 日韩在线a电影| 亚洲欧美一区二区三区孕妇| 26uuuu精品一区二区| 欧美一区二区三区色| 欧美丝袜丝交足nylons图片| 一本在线高清不卡dvd| 国产69精品久久久久毛片| 久久国产夜色精品鲁鲁99| 蜜桃久久久久久久| 婷婷激情综合网| 亚洲一区二区三区在线看| 亚洲精品久久久蜜桃| 亚洲欧洲精品成人久久奇米网| 91精品福利在线一区二区三区| 欧美丝袜丝交足nylons图片| 91国产免费观看| 91久久精品一区二区| 色综合天天综合在线视频| 97se狠狠狠综合亚洲狠狠| 99热国产精品| 91日韩一区二区三区| 日本韩国一区二区| 欧美亚洲愉拍一区二区| 欧美色视频一区| 欧美一级国产精品| 精品国产伦一区二区三区观看体验 | 欧美成人精品1314www| 69堂成人精品免费视频| 日韩欧美国产成人一区二区| 日韩一区二区三区视频在线 | 欧美日韩亚洲综合一区| 欧美日韩国产天堂| 日韩一区二区免费电影| 久久免费电影网| 国产亚洲精久久久久久| 国产精品成人免费精品自在线观看| 偷拍亚洲欧洲综合| 国产色综合一区| 色综合久久综合网欧美综合网| 99免费精品在线| 欧洲精品视频在线观看| 欧美片在线播放| 亚洲成人黄色影院| 北岛玲一区二区三区四区| 欧日韩精品视频| 精品国产91亚洲一区二区三区婷婷| www亚洲一区| 国产一区二区三区最好精华液| 亚洲免费成人av| 亚洲成人免费av| 蜜臀av国产精品久久久久| 国产成人一级电影| 一本到一区二区三区| 欧美日韩国产一区| 国产香蕉久久精品综合网| 亚洲色图视频网站| 久久精品国产精品亚洲综合| 99热在这里有精品免费| 在线成人av影院| 中文成人av在线| 亚洲va韩国va欧美va| 国产一区二区在线观看视频| 99久久精品情趣| 欧美一区二区三区精品| 国产精品麻豆视频| 免费在线成人网| 国产激情一区二区三区四区| 91福利小视频| 国产日韩欧美精品在线| 午夜欧美在线一二页| 国产91精品精华液一区二区三区| 99re6这里只有精品视频在线观看 99re8在线精品视频免费播放 | 大陆成人av片| 欧美福利视频导航| 国产精品嫩草影院av蜜臀| 丝袜国产日韩另类美女| 成人app网站| 91麻豆精品91久久久久同性| 国产精品护士白丝一区av| 亚洲天天做日日做天天谢日日欢 | 亚洲欧美经典视频| 国产一区二区中文字幕| 欧美日韩一区二区不卡| 国产精品污www在线观看| 日韩一区精品视频| 国产精品一级在线| 日韩欧美国产综合在线一区二区三区| 亚洲免费观看在线视频| 国产成人av电影在线观看| 91麻豆精品国产91久久久久 | 国产69精品久久777的优势| 久久久久久综合| 国产精品夜夜嗨| 国产亚洲婷婷免费| 国产传媒欧美日韩成人| 26uuu国产日韩综合| 国内一区二区在线| 精品国产乱码久久久久久久| 久久不见久久见免费视频7| 欧美不卡视频一区| 韩国午夜理伦三级不卡影院| 久久综合视频网| 国产成人激情av| 国产精品九色蝌蚪自拍| 91亚洲国产成人精品一区二区三 | 久久久99免费| 岛国一区二区三区| 国产精品免费免费| 色综合咪咪久久| 午夜精品久久久| 日韩一区二区精品| 国内精品视频一区二区三区八戒 | 久久国产视频网| 久久精品视频网| av一区二区不卡| 亚洲黄色录像片| 666欧美在线视频| 国产美女在线精品| 国产精品蜜臀av| 欧美视频在线观看一区二区| 日本不卡视频在线观看| 久久影音资源网| 91网站在线播放| 午夜激情综合网| 精品少妇一区二区| 北条麻妃一区二区三区| 亚洲国产一区二区在线播放| 91精品国模一区二区三区| 国产精品亚洲а∨天堂免在线| 国产精品不卡视频| 欧美酷刑日本凌虐凌虐| 国产精品自在在线| 一级精品视频在线观看宜春院| 56国语精品自产拍在线观看| 国产精品白丝av| 亚洲国产美女搞黄色| 精品国产网站在线观看| 91同城在线观看| 蜜桃av一区二区三区电影| 日本一区二区三区在线不卡 | 尤物在线观看一区| 日韩欧美国产综合一区| 99久久久国产精品免费蜜臀| 午夜精品福利在线| 中文字幕精品在线不卡| 欧美精品乱码久久久久久| 国产成人av一区| 日本成人在线不卡视频| 国产精品免费av| 日韩三级伦理片妻子的秘密按摩| 欧美精品日韩一区| 国产成人精品网址| 爽好多水快深点欧美视频| 欧美国产激情二区三区| 制服视频三区第一页精品| 成人午夜精品在线| 免费观看久久久4p| 一区二区三区中文在线观看| 久久亚洲捆绑美女| 欧美日韩亚洲另类| 成人的网站免费观看| 青青草成人在线观看| 一区二区三区日韩欧美精品| 久久久久久亚洲综合影院红桃| 欧美日韩大陆一区二区| 91麻豆精品秘密| 粉嫩久久99精品久久久久久夜| 日欧美一区二区| 一区二区三区毛片| 欧美激情一二三区| 2023国产精品自拍| 欧美色视频在线| 色综合天天视频在线观看| 国产白丝精品91爽爽久久| 日本不卡一区二区三区高清视频| 亚洲欧美日韩中文字幕一区二区三区 | 日韩国产欧美在线播放| 亚洲靠逼com| 国产精品嫩草99a| 久久久久97国产精华液好用吗| 欧美一区二区免费| 欧美日韩的一区二区| 在线免费不卡电影| 91看片淫黄大片一级在线观看| 粉嫩av一区二区三区| 黄页网站大全一区二区| 免费在线一区观看| 奇米影视在线99精品| 亚洲国产综合人成综合网站| 玉米视频成人免费看| 综合久久综合久久| 亚洲男人电影天堂| 亚洲欧洲精品天堂一级| 亚洲欧美自拍偷拍| 日韩理论在线观看| 亚洲精品乱码久久久久久 |