亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? pa 765 discriminant function analysis.mht

?? 介紹各種經典算法的代碼。說明詳細
?? MHT
?? 第 1 頁 / 共 4 頁
字號:
From: <由 Microsoft Internet Explorer 5 保存>
Subject: PA 765: Discriminant Function Analysis
Date: Sun, 20 Aug 2000 20:38:08 +0800
MIME-Version: 1.0
Content-Type: multipart/related;
	boundary="----=_NextPart_000_0007_01C00AE6.8CA5B600";
	type="text/html"
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2615.200

This is a multi-part message in MIME format.

------=_NextPart_000_0007_01C00AE6.8CA5B600
Content-Type: text/html;
	charset="gb2312"
Content-Transfer-Encoding: quoted-printable
Content-Location: http://www2.chass.ncsu.edu/garson/pa765/discrim.htm

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD><TITLE>PA 765: Discriminant Function Analysis</TITLE>
<META content=3D"text/html; charset=3Dgb2312" http-equiv=3DContent-Type>
<META content=3D"MSHTML 5.00.2614.3500" name=3DGENERATOR></HEAD>
<BODY bgColor=3Dwhite><!--HEADER BAR FOR PA765-->
<CENTER>
<SCRIPT language=3DJavascript>
<!--
//Create array of nav bar "on" images
if (document.images) {
            nav0 =3D new Image();
            nav0.src =3D "redbar2b.jpg";
	nav1 =3D new Image();
	nav1.src =3D "nav1on.jpg";
	nav2 =3D new Image();
	nav2.src =3D "nav2on.jpg";
	nav3 =3D new Image();
	nav3.src =3D "nav3on.jpg";
	nav4 =3D new Image();
	nav4.src =3D "nav4on.jpg";
	nav5 =3D new Image();
	nav5.src =3D "nav5on.jpg";
            nav99=3D new Image();
            nav99.src =3D "redbar2b.jpg";
}

//Create array of nav bar "off" images
if (document.images) {
            nav0off =3D new Image();
            nav0off.src =3D "redbar2.jpg";
	nav1off =3D new Image();
	nav1off.src =3D "nav1.jpg";
	nav2off =3D new Image();
	nav2off.src =3D "nav2.jpg";
	nav3off =3D new Image();
	nav3off.src =3D "nav3.jpg";
	nav4off =3D new Image();
	nav4off.src =3D "nav4.jpg";
	nav5off =3D new Image();
	nav5off.src =3D "nav5.jpg";
            nav99off =3D new Image();
            nav99off.src =3D "redbar2.jpg";
}
//function to activate images

function imgOn(imgName) {
	if (document.images) {
		document[imgName].src =3D eval(imgName + ".src");
	}
}

//functions to deactivate images
function imgOff(imgName) {
	if (document.images) {
		document[imgName].src =3D "white.jpg";
	}
}

function navOff(navName) {
	if (document.images) {
		document[navName].src =3D eval(navName + "off.src");
	}
}

// -->
</SCRIPT>
<!--THE NEXT SECTION HAS THE FIVE NAVIGATOR BAR CHOICES WITH TWO BLANK =
IMAGES ON THE ENDS TO EXTEND THE NAVIGATOR BAR LINE ON EITHER SIDE-->
<TABLE border=3D0 cellPadding=3D0 cellSpacing=3D0 width=3D620>
  <TBODY>
  <TR>
    <TD><A href=3D"http://www2.chass.ncsu.edu/garson/pa765/index.shtml"=20
      onmouseout=3D"navOff('nav0')" onmouseover=3D"imgOn('nav0')" ;><IMG =

      alt=3D" [Home] " border=3D0 height=3D25 name=3Dnav0=20
      src=3D"http://www2.chass.ncsu.edu/garson/pa765/redbar2.jpg" =
width=3D37></A> <A=20
      href=3D"http://www2.chass.ncsu.edu/garson/pa765/pa765syl.htm"=20
      onmouseout=3D"navOff('nav1')" onmouseover=3D"imgOn('nav1')" ;><IMG =

      alt=3D" [Syllabus] " border=3D0 height=3D25 name=3Dnav1=20
      src=3D"http://www2.chass.ncsu.edu/garson/pa765/nav1.jpg" =
width=3D100></A> <A=20
      href=3D"http://www2.chass.ncsu.edu/garson/pa765/statnote.htm"=20
      onmouseout=3D"navOff('nav2')" onmouseover=3D"imgOn('nav2')" ;><IMG =

      alt=3D" [Statnotes] " border=3D0 height=3D25 name=3Dnav2=20
      src=3D"http://www2.chass.ncsu.edu/garson/pa765/nav2.jpg" =
width=3D100></A> <A=20
      href=3D"http://www2.chass.ncsu.edu/garson/pa765/links.htm"=20
      onmouseout=3D"navOff('nav3')" onmouseover=3D"imgOn('nav3')" ;><IMG =

      alt=3D" [Links] " border=3D0 height=3D25 name=3Dnav3=20
      src=3D"http://www2.chass.ncsu.edu/garson/pa765/nav3.jpg" =
width=3D100></A> <A=20
      href=3D"http://hcl.chass.ncsu.edu/ssl/ssl.htm" =
onmouseout=3D"navOff('nav4')"=20
      onmouseover=3D"imgOn('nav4')" ;><IMG alt=3D" [Lab] " border=3D0 =
height=3D25=20
      name=3Dnav4 =
src=3D"http://www2.chass.ncsu.edu/garson/pa765/nav4.jpg"=20
      width=3D100></A> <A=20
      href=3D"http://www2.chass.ncsu.edu/garson/pa765/garson.htm"=20
      onmouseout=3D"navOff('nav5')" onmouseover=3D"imgOn('nav5')" ;><IMG =

      alt=3D" [Instructor] " border=3D0 height=3D25 name=3Dnav5=20
      src=3D"http://www2.chass.ncsu.edu/garson/pa765/nav5.jpg" =
width=3D100></A> <A=20
      href=3D"http://www2.chass.ncsu.edu/garson/pa765/index.shtml"=20
      onmouseout=3D"navOff('nav99')" onmouseover=3D"imgOn('nav99')" =
;><IMG=20
      alt=3D" [Home] " border=3D0 height=3D25 name=3Dnav99=20
      src=3D"http://www2.chass.ncsu.edu/garson/pa765/redbar2.jpg" =
width=3D37></A>=20
      <BR></TD></TR></TBODY></TABLE></CENTER><!--END OF HEADER BAR FOR =
PA765-->
<CENTER>
<H1>Discriminant Function Analysis</H1></CENTER>
<P><BR>
<H2>Overview</H2>Discriminant function analysis, a.k.a. discriminant =
analysis or=20
DA, is used to classify cases into the values of a categorical =
dependent,=20
usually a dichotomy.If discriminant function analysis is effective for a =
set of=20
data, the classification table of correct and incorrect estimates will =
yield a=20
high percentage correct. There are several purposes for DA:=20
<P>
<UL>
  <LI>To investigate differences between groups.=20
  <LI>To determine the most parsimonious way to distinguish between =
groups.=20
  <LI>To discard variables which are little related to group =
distinctions.=20
  <LI>To classify cases into groups.=20
  <LI>To test theory by observing whether cases are classified as =
predicted.=20
  </LI></UL>
<P>Discriminant analysis shares all the usual assumptions of =
correlation,=20
requiring linear and homoscedastic relationships, and untruncated =
interval or=20
near interval data. Like multiple regression, it also assumes proper =
model=20
specification (inclusion of all important independents and exclusion of=20
extraneous variables). DA also assumes the dependent variable is a true=20
dichotomy since data which are forced into dichotomous coding are =
truncated,=20
attenuating correlation.=20
<P>DA is an earlier alternative to <A=20
href=3D"http://www2.chass.ncsu.edu/garson/pa765/logistic.htm">logistic=20
regression</A>, which is now frequently used in place of DA as it =
usually=20
involves fewer violations of assumptions, is robust, and has =
coefficients which=20
many find easier to interpret.. See also the separate topic on <A=20
href=3D"http://www2.chass.ncsu.edu/garson/pa765/mda.htm">multiple =
discriminant=20
function analysis</A> (MDA) for dependents with more than two =
categories.=20
<P>
<P><BR>
<H2>Key Terms and Concepts</H2>
<UL>
  <P><A name=3Ddav></A>
  <LI><B>Discriminating variables: </B>These are the independent =
variables, also=20
  called <I>predictors</I>.=20
  <P></P>
  <LI><B>The criterion variable</B>. This is the dependent variable, =
which is=20
  the object of classification efforts.=20
  <P><A name=3Ddf></A></P>
  <LI><B>Discriminant function: </B>A discriminant function, also called =
a=20
  <I>canonical root</I>, is a latent variable which is created as a =
linear=20
  combination of discriminating (independent) variables, such that L =3D =

  b<SUB>1</SUB>x<SUB>1</SUB> + b<SUB>2</SUB>x<SUB>2</SUB> + ... +=20
  b<SUB>n</SUB>x<SUB>n</SUB> + c, where the b's are discriminant =
coefficients,=20
  the x's are discriminating variables, and c is a <A=20
  =
href=3D"http://www2.chass.ncsu.edu/garson/pa765/discrim.htm#constant">con=
stant</A>.=20
  This is analogous to multiple regression, but the b's are discriminant =

  coefficients which maximize the distance between the means of the =
criterion=20
  (dependent) variable. Note that the foregoing assumes the discriminant =

  function is estimated using ordinary least-squares, the traditional =
method,=20
  but there is also a version involving <A=20
  =
href=3D"http://www2.chass.ncsu.edu/garson/pa765/discrim.htm#mle">maximum =

  likelihood estimation</A>.=20
  <P>
  <UL>
    <P><A name=3Dds></A>
    <LI>The <B>discriminant score</B>, also called the DA score, is the =
value=20
    resulting from applying a discriminant function formula to the data =
for a=20
    given case. The <I>Z score</I> is the discriminant score for =
standardized=20
    data.=20
    <P></P>
    <LI><B>Cutoff: </B>If the discriminant score of the function is less =
than or=20
    equal to the cutoff, the case is classed as 0, or if above it is =
classed as=20
    1. When group sizes are equal, the cutoff is the mean of the two =
centroids=20
    (for two-group DA). If the groups are unequal, the cutoff is the =
weighted=20
    mean.=20
    <P><A name=3Dcoeff></A></P>
    <LI><B>Unstandardized discriminant coefficients</B> are used in the =
formula=20
    for making the classifications in DA, much as b coefficients are =
used in=20
    regression in making predictions. The product of the unstandardized=20
    coefficients with the observations yields the discriminant scores.=20
    <P><A name=3Dcoeff2></A></P>
    <LI><B>Standardized discriminant coefficients</B> are used to =
compare the=20
    relative importance of the independent variables, much as beta =
weights are=20
    used in regression.=20
    <P></P>
    <LI>The <B>group centroid</B> is the mean value for the discriminant =
scores=20
    for a given category of the dependent. Two-group discriminant =
analysis has=20
    two centroids, one for each group.=20
    <P></P>
    <LI><B>Number of discriminant functions</B>. There is one =
discriminant=20
    function for 2-group discriminant analysis, but for higher order DA, =
the=20
    number of functions (each with its own cut-off value) is the lesser =
of (g -=20
    1), where g is the number of groups, or p,the number of =
discriminating=20
    (independent) variables. Each discriminant function is orthogonal to =
the=20
    others. See the section on <A=20
    href=3D"http://www2.chass.ncsu.edu/garson/pa765/mda.htm">multiple =
discriminant=20
    analysis</A>. </LI></UL>
  <P><A name=3Dsignif></A></P>
  <LI><B>Tests of significance</B>=20
  <P>
  <UL><A name=3Dlambda></A>
    <LI><B>Wilks's lambda</B> is used in an <B>ANOVA (F) test of mean=20
    differences</B> in DA, such that the <U>smaller</U> the lambda for =
an=20
    independent variable, the <U>more</U> that variable contributes to =
the=20
    discriminant function. Lambda varies from 0 to 1, with 0 meaning =
group means=20
    differ (thus the more the variable differentiates the groups), and 1 =
meaning=20
    all group means are the same. The F test of Wilks's lambda shows =
which=20

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
成人一道本在线| 久久网站最新地址| 精品久久99ma| 亚洲美腿欧美偷拍| 国产一区二区影院| 欧美日韩dvd在线观看| 国产精品免费aⅴ片在线观看| 一区二区三区色| 国产99精品视频| 日韩欧美的一区二区| 亚洲综合男人的天堂| 国产精品一区二区男女羞羞无遮挡 | 亚洲黄色性网站| 国产一区在线精品| 91精品国产综合久久久久久| 亚洲黄色小说网站| 成人av在线资源网站| 久久久久久久av麻豆果冻| 日本中文字幕一区二区视频| 在线欧美日韩精品| 国产精品久久久99| 国产不卡免费视频| 久久久久久久久99精品| 精油按摩中文字幕久久| 欧美高清精品3d| 午夜精品aaa| 精品视频在线免费看| 亚洲一区二区欧美激情| 日本韩国欧美一区二区三区| 亚洲婷婷国产精品电影人久久| 国产成人一区二区精品非洲| 久久久天堂av| 国产精品一区二区在线观看不卡| 精品噜噜噜噜久久久久久久久试看| 同产精品九九九| 51精品秘密在线观看| 日韩av电影一区| 制服丝袜成人动漫| 秋霞影院一区二区| 日韩免费一区二区三区在线播放| 免费av网站大全久久| 日韩欧美一级精品久久| 狠狠色丁香婷综合久久| 久久亚洲精精品中文字幕早川悠里| 国产真实乱子伦精品视频| 久久这里只有精品首页| 大白屁股一区二区视频| 国产精品区一区二区三| 一本色道久久综合亚洲91 | 亚洲成a人片综合在线| 欧美日韩国产另类不卡| 人禽交欧美网站| 久久久久国产免费免费 | 亚洲情趣在线观看| 欧美性感一类影片在线播放| 日韩精品福利网| 久久先锋资源网| 99久久婷婷国产综合精品电影| 亚洲日本韩国一区| 欧美精品1区2区3区| 国产精品影音先锋| 亚洲另类春色国产| 日韩午夜小视频| 不卡av在线免费观看| 日韩精品欧美成人高清一区二区| xfplay精品久久| 91蝌蚪porny| 六月丁香婷婷久久| 中文字幕一区二区三区四区不卡| 欧美日韩在线三区| 国产伦精品一区二区三区在线观看| 中文字幕在线观看一区二区| 欧美一级黄色片| 99久久婷婷国产综合精品| 日韩av一二三| 亚洲天堂av一区| 欧美精品一区二区三区在线| 一本一道久久a久久精品| 韩国毛片一区二区三区| 一区二区三区91| 国产欧美日韩激情| 欧美一区二区视频在线观看| av福利精品导航| 精品写真视频在线观看| 亚洲一区在线播放| 国产欧美视频一区二区三区| 欧美精品在线观看播放| 色网综合在线观看| 国产.欧美.日韩| 久久99精品国产麻豆不卡| 一区二区三区成人| 国产精品色在线观看| 日韩欧美一区二区在线视频| 色激情天天射综合网| 盗摄精品av一区二区三区| 久久99精品久久久久久久久久久久| 亚洲综合久久久久| 国产精品嫩草99a| 亚洲精品在线免费观看视频| 91麻豆精品国产综合久久久久久 | 亚洲欧美激情视频在线观看一区二区三区 | 成人aaaa免费全部观看| 狠狠久久亚洲欧美| 日韩av一二三| 石原莉奈在线亚洲二区| 亚洲一区二区精品久久av| 亚洲天堂2016| 中文字幕制服丝袜成人av| 欧美国产日韩在线观看| 久久婷婷久久一区二区三区| 日韩欧美自拍偷拍| 欧美精品黑人性xxxx| 欧美日韩国产另类一区| 欧美日韩一二三区| 欧美日韩一区在线观看| 欧美精品久久99久久在免费线| 欧美浪妇xxxx高跟鞋交| 欧美女孩性生活视频| 欧美日韩成人高清| 在线成人免费视频| 日韩三级免费观看| 日韩美女一区二区三区| 26uuu另类欧美| 久久久综合视频| 国产欧美精品日韩区二区麻豆天美| 国产视频一区在线观看| 国产精品午夜在线观看| 国产精品久久久久影院亚瑟 | 亚洲大片精品永久免费| 天涯成人国产亚洲精品一区av| 日韩中文字幕91| 麻豆精品在线看| 国产一区二区按摩在线观看| 国产成人免费在线观看| 99国产麻豆精品| 欧美在线制服丝袜| 日韩一区二区三区在线| 久久精品免费在线观看| 亚洲欧洲国产日本综合| 亚洲电影欧美电影有声小说| 日韩成人免费在线| 国产尤物一区二区在线| 成人av网站免费| 欧美色国产精品| 欧美精品一区二区三区一线天视频| 欧美极品aⅴ影院| 亚洲一区二区免费视频| 国产自产2019最新不卡| 99精品欧美一区二区三区小说| 欧美视频在线一区| 日韩欧美色综合| 国产精品久久久久久久久免费丝袜 | 美女尤物国产一区| 成人午夜在线免费| 精品视频1区2区| 2020国产精品自拍| 亚洲精选视频在线| 国产一区视频导航| 欧美在线不卡一区| 国产亚洲精品久| 天堂在线一区二区| 成人小视频免费观看| 制服丝袜一区二区三区| 国产精品久久久99| 狂野欧美性猛交blacked| 91亚洲男人天堂| 精品国产成人系列| 亚洲福利视频一区二区| 成人性生交大片免费看视频在线 | aa级大片欧美| 日韩欧美亚洲国产精品字幕久久久 | 久久这里只精品最新地址| 亚洲国产另类av| av欧美精品.com| 国产精品国产自产拍高清av | 亚洲精品国产一区二区精华液 | 国产日韩欧美电影| 午夜电影久久久| 91在线观看地址| 亚洲国产成人在线| 久久91精品久久久久久秒播| 欧美男男青年gay1069videost| 成人免费一区二区三区视频 | 久久国产福利国产秒拍| 欧美日韩一区二区在线视频| 日韩伦理av电影| 福利一区二区在线观看| 欧美成人欧美edvon| 天天做天天摸天天爽国产一区 | 亚洲永久免费av| 99精品视频在线观看免费| 国产情人综合久久777777| 免费成人性网站| 91精品国产入口| 日韩国产精品大片| 91精品国产全国免费观看| 婷婷亚洲久悠悠色悠在线播放 | 91精品国产91久久久久久一区二区 | 国产精品素人一区二区| 国产盗摄女厕一区二区三区|