亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? pa 765 discriminant function analysis.mht

?? 介紹各種經典算法的代碼。說明詳細
?? MHT
?? 第 1 頁 / 共 4 頁
字號:
  <UL>No. In discriminant analysis the groups (clusters) are determined=20
    beforehand and the object is to determine the linear combination of=20
    independent variables which best discriminates among the groups. In =
cluster=20
    analysis the groups (clusters) are not predetermined and in fact the =
object=20
    is to determine the best way in which cases may be clustered into =
groups.=20
</UL>
  <P><A name=3Dconstant></A></P>
  <LI><B>When does the discriminant function have no constant term?</B>=20
  <UL>When the data are standardized or are deviations from the mean. =
</UL>
  <P><A name=3Dhov></A></P>
  <LI><B>How important is it that the assumptions of homogeneity of =
variances=20
  and of multivariate normal distribution be met?</B>=20
  <UL>Lachenbruch (1975) indicates that DA is relatively robust even =
when=20
    there are modest violations of these assumptions. Klecka (1980) =
points out=20
    that dichotomous variables, which often violate multivariate =
normality, are=20
    not likely to affect conclusions based on DA. </UL>
  <P><A name=3Dbetas></A></P>
  <LI><B>In DA, how can you assess the relative importance of the =
discriminating=20
  variables?</B>=20
  <UL>The same as in regression, by comparing beta weights. If not =
output=20
    directly by one's statistical package (SPSS does), one may obtain =
beta=20
    weights by running DA on standardized scores. That is, betas are=20
    standardized discriminant function coefficients. The ratio of the =
betas is=20
    the relative contribution of each variable. Note that the betas will =
change=20
    if variables are added or deleted from the equation.=20
    <P><I>Dummy variables</I>. As in regression, dummy variables must be =

    assessed as a group, not on the basis of individual beta weights. =
This is=20
    done through <B>hierarchical discriminant analysis</B>, running the =
analysis=20
    first with, then without the set of dummies. The difference in the =
squared=20
    canonical correlation indicates the explanatory effect of the set of =

    dummies.=20
    <P>Alternatively, for interval independents, one can correlate the=20
    discriminant function scores with the independents. The =
discriminating=20
    variables which matter the most to a particular function will be =
correlated=20
    highest with the DA scores. </P></UL>
  <P><A name=3Dmle></A></P>
  <LI><B>What is the maximum likelihood estimation method in =
discriminant=20
  analysis (logistic discriminate function analysis)?</B>=20
  <UL>Using mle, a discriminant function is a function of the form T =3D =
k1X1 +=20
    k2X2 + ... + knXn, where X1...Xn are the differences between the two =
groups=20
    on the ith independent variable, k1...kn are the logit coefficients, =
and T=20
    is a function which classes the case into group 0 or group 1. If the =
data=20
    are unstandardized, there is also a constant term. The discriminant =
function=20
    arrives at coefficients which set the highest possible ratio of=20
    between-group to within-groups variance (similar to the ANOVA F =
test, except=20
    that in DA the group variable is the dependent rather than the =
independent).=20
    This method, called <B>logistic discriminate function analysis</B>, =
is=20
    supported by SPSS. </UL>
  <P><A name=3Dfisher></A></P>
  <LI><B>What are Fisher's linear discriminant functions? </B>
  <UL>The classical method of discriminant classification calculated one =
set=20
    of discriminant function coefficients for each dependent category, =
using=20
    these to make the classifications. SPSS still outputs these =
coefficients if=20
    you check the "Fisher's" box under the Statistics option in =
discriminant=20
    function analysis. </UL>
  <P><A name=3Dstep></A></P>
  <LI><B>What is stepwise DA?</B>=20
  <UL>Stepwise procedures select the most correlated independent first, =
remove=20
    the variance in the dependent, then select the second independent =
which most=20
    correlates with the remaining variance in the dependent, and so on =
until=20
    selection of an additional independent does not increase the =
R-squared (in=20
    DA, canonical R-squared) by a significant amount (usually =
signif=3D.05). As in=20
    multiple regression, there are both forward (adding variables) and =
backward=20
    (removing variables) stepwise versions.=20
    <P>In SPSS there are several available criteria for entering or =
removing new=20
    variables at each step: Wilks?lambda, unexplained variance,=20
    Mahalanobis?distance, smallest F ratio, and Rao=92s V. The =
researcher typically=20
    sets the critical significance level by setting the "F to remove" in =
most=20
    statistical packages.=20
    <P>Stepwise procedures are sometimes said to eliminate the problem =
of=20
    multicollinearity, but this is misleading. The stepwise procedure =
uses an=20
    intelligent criterion to set order, but it certainly does not =
eliminate the=20
    problem of multicollinearity. To the extent that independents are =
highly=20
    intercorrelated, the standard errors of their standardized =
discriminant=20
    coefficients will be inflated and it will be difficult to assess the =

    relative importance of the independent variables.=20
    <P>The researcher should keep in mind that the stepwise method =
capitalizes=20
    on chance associations and thus significance levels are worse (that =
is,=20
    numerically higher) than the true alpha significance rate reported. =
Thus a=20
    reported significance level of .05 may correspond to a true alpha =
rate of=20
    .10 or worse. </P></UL>
  <P><A name=3Dmancova></A></P>
  <LI><B>I have heard DA is related to MANCOVA. How so?</B>=20
  <UL>Discriminant analysis can be conceptualized as the inverse of =
MANCOVA.=20
    MANCOVA can be used to see the effect on multiple dependents of a =
single=20
    categorial independent, while DA can be used to see the effect on a=20
    categorical dependent of multiple interval independents. The SPSS =
MANOVA=20
    procedure, which also covers MANCOVA, can be used to generate =
discriminant=20
    functions as well, though in practical terms this is not the easiest =
route=20
    for the researcher interested in DA. </UL>
  <P></P></LI></UL>
<UL></UL>
<P><BR>
<H2>Bibliography</H2>
<UL>
  <LI>George H. Dunteman (1984). <I>Introduction to multivariate =
analysis</I>.=20
  Thousand Oaks, CA: Sage Publications. Chapter 5 covers classification=20
  procedures and discriminant analysis.=20
  <P></P>
  <LI>Klecka, William R. (1980). <I>Discriminant Analysis</I>. =
Quantitative=20
  Applications in the Social Sciences Series, No. 19. Thousand Oaks, CA: =
Sage=20
  Publications.=20
  <P>Lachenbruch, P. A. (1975). <I>Discriminant Analysis</I>. NY: =
Hafner.=20
  <P></P>
  <LI>Press, S. J. and S. Wilson (1978). Choosing between logistic =
regression=20
  and discriminant analysis. <I>Journal of the American Statistical=20
  Association</I>, Vol. 73: 699-705. The authors make the case for the=20
  superiority of logistic regression for situations where the =
assumptions of=20
  multivariate normality are not met (ex., when dummy variables are =
used),=20
  though discriminant analysis is held to be better when assumptions are =
met.=20
  They conclude that logistic and discriminant analyses will usually =
yield the=20
  same conclusions, except in the case when there are independents which =
result=20
  in predictions very close to 0 and 1 in logistic analysis. </LI></UL>
<P>
<P>
<HR>

<CENTER>
<SCRIPT language=3DJavaScript>

<!-- hide from other browsers
function goHist(a)=20
{
   history.go(a);      // Go back one.
}
//<!-- finish hiding -->

</SCRIPT>

<FORM method=3Dpost><INPUT onclick=3DgoHist(-1) type=3Dbutton =
value=3DBack>=20
</FORM></CENTER>
<HR>
</BODY></HTML>

------=_NextPart_000_0007_01C00AE6.8CA5B600
Content-Type: image/jpeg
Content-Transfer-Encoding: base64
Content-Location: http://www2.chass.ncsu.edu/garson/pa765/redbar2.jpg

/9j/4AAQSkZJRgABAgEASABIAAD/7QuIUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA
AQBIAAAAAQABOEJJTQPzAAAAAAAIAAAAAAAAAAA4QklNBAoAAAAAAAEAADhCSU0nEAAAAAAACgAB
AAAAAAAAAAI4QklNA/UAAAAAAEgAL2ZmAAEAbGZmAAYAAAAAAAEAL2ZmAAEAoZmaAAYAAAAAAAEA
MgAAAAEAWgAAAAYAAAAAAAEANQAAAAEALQAAAAYAAAAAAAE4QklNA/gAAAAAAHAAAP//////////
//////////////////8D6AAAAAD/////////////////////////////A+gAAAAA////////////
/////////////////wPoAAAAAP////////////////////////////8D6AAAOEJJTQQIAAAAAAAQ
AAAAAQAAAkAAAAJAAAAAADhCSU0ECQAAAAAKFwAAAAEAAACAAAAAVgAAAYAAAIEAAAAJ+wAYAAH/
2P/gABBKRklGAAECAQBIAEgAAP/+ACdGaWxlIHdyaXR0ZW4gYnkgQWRvYmUgUGhvdG9zaG9wqCA0
LjAA/+4ADkFkb2JlAGSAAAAAAf/bAIQADAgICAkIDAkJDBELCgsRFQ8MDA8VGBMTFRMTGBEMDAwM
DAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAENCwsNDg0QDg4QFA4ODhQUDg4ODhQRDAwM
DAwREQwMDAwMDBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM/8AAEQgAVgCAAwEiAAIRAQMR
Af/dAAQACP/EAT8AAAEFAQEBAQEBAAAAAAAAAAMAAQIEBQYHCAkKCwEAAQUBAQEBAQEAAAAAAAAA
AQACAwQFBgcICQoLEAABBAEDAgQCBQcGCAUDDDMBAAIRAwQhEjEFQVFhEyJxgTIGFJGhsUIjJBVS
wWIzNHKC0UMHJZJT8OHxY3M1FqKygyZEk1RkRcKjdDYX0lXiZfKzhMPTdePzRieUpIW0lcTU5PSl
tcXV5fVWZnaGlqa2xtbm9jdHV2d3h5ent8fX5/cRAAICAQIEBAMEBQYHBwYFNQEAAhEDITESBEFR
YXEiEwUygZEUobFCI8FS0fAzJGLhcoKSQ1MVY3M08SUGFqKygwcmNcLSRJNUoxdkRVU2dGXi8rOE
w9N14/NGlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vYnN0dXZ3eHl6e3x//aAAwDAQACEQMRAD8A
84SSSW+yKSSSSUpJJJJSkk7RJ/KiCqWl0e0clWsHJZc0eMGMY3wjjuPF/c9LHPLGJo6+SJJEFYOg
Cu9L+r3WOsG4dNx/X9Db6vvYyN+7Z/PPr3fzb03meUny8eKcoED5uE/JfymfEI8PEqGWMttPNzkl
c6r0fqPSMhuN1Gn0LnsFjW7mvlpLmB26p1jfpMeqarAgiwbHgyKSSSRUpJJJJT//0POEkklvsikk
kklKTsYXmB8dVKqqy1waxrnk9mgk/gruBZdiXucGQ7aWkPB8R/V/dVrl+V9yEshkIxj0/SkUcURK
ImTGEjUsgjx8P0/SX6e7GbXe22sPc9oFZ2gwYd+99FPtbEQI8F0P1QwOnZOS/JzLzQ/DfVZQN7WB
xBe87/UB3fzbPoLpvrbmYdv1fymV31vefThrXtJMWVngFLmfiBHMxxQxS4ZSiCQahj4uHUen1LDD
LPDAmJ4MYlwyEdxxccuOb5tkYdlVDcsForsdta0TM6+X8hbf1M6N17qv2z9kZgw/R9L1ptsq3bvV
9P8AmGv37dln01mY2S/GeXsAJI2+77+0eCXUMY3Cq3HDrrLJdc1nu2k7XR7PofnfSWgZnPi+73GE
pAD3ZD3KGP1+rH6eP5f30+xDJj93DfHjA93BvI/oe5jl+lxy9XtcH6t2f8aX/igx/wDwmz/z5kLj
lsdc67l9ezWZea2ut7KxUBUC1u0F9n+EfZ7t1iybBDzHHisyfIT5bDjEzeShxRjH0R+b/KLceQSN
UxSSSUDKpJJJJT//0fOEkklvsikhyEkbDaHZlDXAFpsYCDqCC4J0K4o3qLCYxMiIg1xHhv8AvJsN
1tVjbKvbtJ10PIjurDnF7i52rnGSfMrTHS3ZvVKcDEFdT7mkifa2Wh73bvTa781n7q6vqf1S+0dG
xcTErxqc2n0/Xv27d21jmW/pWV+o/fZ7/erXOc9hxZYR4Y4xLpH08Ef35MfMYcuGc+XlMzGKR6ng
4/3hF4WnJuon0nbd0ToDx/WUrM3KtYa7Hy08iAONewUsHAuzrPTqLWmWt9xIEuMD6Icr2f8AVnPw
MR+VdZU6uuJDC4n3EM03Vt/eUhnGJAJoy2DDk57Jy8MWGeeeKHMAjDi45jHliZ+3MRh8v845CLTk
3UT6Ttu6J0B4/rKz0fo+T1jJdjYzmMexhsJsJAgFrPzG2f6RdX1X6nXZOHgVYbcam7Hr25T4LfUf
trbv3V1F1nuZZ/OKDLzmLFkjCcgDLf8Aqafpf3k45ZISE8cpQlH5ZQPDLX06Si8HjdNyr/e2vcwE
gncBrH9ZRzun347A99e1pcADIOsE+KsMuurEMe5o5hpI/Iq2dfc9u19jnDcDBJI4VzmOYOQfrDIR
qpRxnhv/ABuJmxjlBjAEcvv18xlD2eP+7we5w/4bSSSSWUas1suUkkkkp//S84SSSW+yKRsH+m4/
/Gs/6oIK0OmYV1+Syylm5tL2OeZAgTP5x/kpk8sMVSySEIgi5SPDGPnKS7HIRyQMjQEo2Ttu9N0q
+mj6z4dt9jaqmsfue8hrRLLmiXO9v0l2v7a6N/3Pxv8At5n/AJJed9Qwcq65rq2bmhoEyBrJ8Sq3
7Kz/APRf9Jv/AJJM5uXw7mMgmedwxqPDplxf3v3v6yPiGeB5zPKEozjKdiUTxRPkW79Wv6WP+Mq/
6orpfrP/AMh5P9j/AM+VrnuiY1+Lkb727G72GZB0aTu+juWx17qGNlYFuDTZvybQ0srgiQHte73u
AZ9FjvzlJn+IcmcuLh5jDKtzHLjPD6v0vU4nxqEsuT4OcY4xh4vd4PX7X9L4/wBZw/J6PX63M+pG
VjYvVrbMm5lDDjuaHWODATvqO3c8jwXb/tro3/c/G/7eZ/5JeZfsrP8A9F/0m/8Akkv2Vn/6L/pN
/wDJKHmT8Oz5PcPO4YmgKGXF0/wnQjkAFaNRVssEjTxH5FqfsrP/ANF/0m/+SRsPo5daftlM17dP
d+dI/wBG791T838V5KGCcxzGLIYi+DHkxzyT8IR40RmIm3m9rvApLW6szp1b214Yh7C5tw92hEAf
zn9v6KyVDy2f38YyCEoCW0cg4Z/WLZjLiF1XmpJJJTrn/9PzhJJJb7IpWKsu2okU2Pr3RO0ls/Ha
VXSBgymThGYqQ4h2KCAXp+lOysnpto9Vxt9SGvc4yABW76WrkTpz7/tdlVtjn7GuBBJIkOaO65f1
fJL1fJYub4Gck8khkEBkNiPAPR/z2A4LvXfwepF1nTmudmPdaHiW7SXRt+l/Obf3kI9f6cXh5qsL
xoHbWyPnvWFjZ32fd7N26O8cfJQycr7RaLNu2G7YmfHy/lJuL4FHjIygzv8AykT7Q/u+3xSWjCeK
iLFfPdf816wdRoOIzL2u9OwloECdC4fvfyFK7PppZW9wcRaNzYA8jrr/AClxvq+SXq+SYf8Ai6OI
kZSI2Tw8P6P6MeLj/RT928XtcbJZksL2AgA7fd9/afFNmVX21BtD/TcHSTJGkH91cX6vkl6vkm/8
nJCVjNXgcd/+pFfdzeh/BLnB7MmxrjLg9wcZ5IKrp3O3RpEJl0GKHBCMTvEV9jYAoAKSSSUiX//U
84SVFJb7I3klRSSU3klRSSU3klRSSU3klRSSU3klRSSU3klRSSU3klRSSU//2QA4QklNBAYAAAAA
AAcAAQAAAAEBAP/+ACdGaWxlIHdyaXR0ZW4gYnkgQWRvYmUgUGhvdG9zaG9wqCA0LjAA/+4ADkFk
b2JlAGSAAAAAAf/bAIQADAgICAkIDAkJDBELCgsRFQ8MDA8VGBMTFRMTGBEMDAwMDAwRDAwMDAwM
DAwMDAwMDAwMDAwMDAwMDAwMDAwMDAENCwsNDg0QDg4QFA4ODhQUDg4ODhQRDAwMDAwREQwMDAwM
DBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM/8AAEQgAGQAlAwEiAAIRAQMRAf/dAAQAA//E
AT8AAAEFAQEBAQEBAAAAAAAAAAMAAQIEBQYHCAkKCwEAAQUBAQEBAQEAAAAAAAAAAQACAwQFBgcI
CQoLEAABBAEDAgQCBQcGCAUDDDMBAAIRAwQhEjEFQVFhEyJxgTIGFJGhsUIjJBVSwWIzNHKC0UMH
JZJT8OHxY3M1FqKygyZEk1RkRcKjdDYX0lXiZfKzhMPTdePzRieUpIW0lcTU5PSltcXV5fVWZnaG
lqa2xtbm9jdHV2d3h5ent8fX5/cRAAICAQIEBAMEBQYHBwYFNQEAAhEDITESBEFRYXEiEwUygZEU
obFCI8FS0fAzJGLhcoKSQ1MVY3M08SUGFqKygwcmNcLSRJNUoxdkRVU2dGXi8rOEw9N14/NGlKSF
tJXE1OT0pbXF1eX1VmZ2hpamtsbW5vYnN0dXZ3eHl6e3x//aAAwDAQACEQMRAD8A89RcfHfe/a3R
o+k+NGjzQl0/Tuk3jpQ6lj2NrFFlUDUO3vFZ9Td/IfbV/wBP/rkdSrQGWojp3k9BhjAyBmajcY1+
/OfphBqYn1b+059WDY9+K+x+xxsDZaSNzP0djsf6f/Gf8T6tixHNc07XAtI5B0K7PI6J1I5PUTk5
DH34NbX3Olzt+5nqNaHOa36NLP8Atz/txcr1E1m+WNLdNZIM/c1qixTjMCUJGUJDihKXzTifllHh
ZcwwyhxwkBOIhGUID0eocfH/AIUZRaqSSSlar//Q89WjV1OtoYSyHMAGgMAtI2fn/R9NZySZrpv8
wqv3/wBD/C/ddTmeKhw/eLv/AMB+7x/4fsuvlddOZfZk5TTbkPPufIAMBrGfRbX+YP8ARqlm5NN2
30W7QPpbgJ/z5cqqShxe1Ufb4eGhw8FcPB+jw8P6LWxcPuY/92cF+j3/AH/uvy+j+e9H+zUkkkpX
Qf/Z

------=_NextPart_000_0007_01C00AE6.8CA5B600
Content-Type: image/jpeg
Content-Transfer-Encoding: base64
Content-Location: http://www2.chass.ncsu.edu/garson/pa765/nav1.jpg

/9j/4AAQSkZJRgABAgEASABIAAD/7QbwUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA
AQBIAAAAAQABOEJJTQPzAAAAAAAIAAAAAAAAAAA4QklNBAoAAAAAAAEAADhCSU0nEAAAAAAACgAB
AAAAAAAAAAI4QklNA/UAAAAAAEgAL2ZmAAEAbGZmAAYAAAAAAAEAL2ZmAAEAoZmaAAYAAAAAAAEA
MgAAAAEAWgAAAAYAAAAAAAEANQAAAAEALQAAAAYAAAAAAAE4QklNA/gAAAAAAHAAAP//////////

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
一区二区三区**美女毛片| 懂色av一区二区三区蜜臀| 久88久久88久久久| 97se亚洲国产综合自在线不卡 | 蜜桃视频在线一区| 成人黄页毛片网站| 日韩精品中午字幕| 亚洲一卡二卡三卡四卡无卡久久| 久久99久久精品| 91成人免费电影| 国产精品乱人伦中文| 青青草国产精品97视觉盛宴| 99精品久久99久久久久| 久久综合狠狠综合久久综合88| 亚洲高清在线视频| 91麻豆免费看片| 国产色一区二区| 久久91精品国产91久久小草 | 欧美一级高清大全免费观看| 亚洲另类中文字| 成人免费精品视频| 久久网站最新地址| 精品在线亚洲视频| 日韩欧美一级二级| 美女尤物国产一区| 日韩三级av在线播放| 午夜激情一区二区| 欧美日韩激情在线| 亚洲国产婷婷综合在线精品| 色欧美日韩亚洲| 亚洲精品成人悠悠色影视| www.久久精品| 国产精品久久一卡二卡| 国产91精品精华液一区二区三区| 久久精品一区二区三区不卡| 精品一区二区三区视频| 精品国产伦一区二区三区观看体验| 视频在线观看国产精品| 欧美一区二区三区白人| 免费在线观看视频一区| 日韩欧美高清在线| 国产伦精品一区二区三区在线观看 | 日韩国产精品久久久久久亚洲| 欧美日韩情趣电影| 日本免费在线视频不卡一不卡二| 欧美丰满美乳xxx高潮www| 麻豆精品视频在线观看| 精品久久久久久久久久久久久久久久久 | 日韩电影在线免费| 337p亚洲精品色噜噜狠狠| 青青草91视频| 久久精品日产第一区二区三区高清版 | 99久久99久久久精品齐齐| 亚洲精品v日韩精品| 欧美精品1区2区3区| 九九九精品视频| 日本一二三四高清不卡| 色婷婷av一区二区三区gif| 亚洲国产欧美一区二区三区丁香婷| 欧美日韩中文字幕精品| 老司机精品视频一区二区三区| 久久久99免费| 91天堂素人约啪| 日韩国产欧美在线播放| 国产人伦精品一区二区| 色综合久久久网| 男人的天堂久久精品| 国产亲近乱来精品视频 | 日韩一区二区三区四区| 粉嫩av亚洲一区二区图片| 亚洲男人的天堂在线观看| 欧美久久久久久久久久 | 免费人成黄页网站在线一区二区| 久久理论电影网| 欧美视频一区在线观看| 国产伦理精品不卡| 亚洲国产精品一区二区www | 欧美日韩成人在线| 国产精品综合在线视频| 亚洲福利视频导航| 欧美激情一区二区三区四区| 555夜色666亚洲国产免| av一区二区三区| 久久99久久久久久久久久久| 亚洲天堂久久久久久久| 欧美精品一区视频| 欧美日韩一本到| 不卡的看片网站| 国产做a爰片久久毛片| 亚洲二区在线视频| |精品福利一区二区三区| 久久久欧美精品sm网站| 欧美高清dvd| 欧美午夜精品理论片a级按摩| 国产成人啪午夜精品网站男同| 日韩精品免费视频人成| 夜夜亚洲天天久久| 国产精品白丝在线| 亚洲欧美一区二区三区极速播放| 精品国产sm最大网站免费看| 欧美日免费三级在线| 色综合久久九月婷婷色综合| 成人av网址在线观看| 国产成人一区在线| 国产毛片精品视频| 国产精品综合av一区二区国产馆| 日韩高清不卡一区| 日韩 欧美一区二区三区| 亚洲一区日韩精品中文字幕| 亚洲天堂av一区| 国产精品久久久久久久第一福利 | 亚洲国产精品99久久久久久久久| 日韩精品中文字幕在线一区| 在线播放视频一区| 欧美一级高清大全免费观看| 欧美一区二区精品在线| 欧美一区二区三区视频| 制服丝袜中文字幕亚洲| 678五月天丁香亚洲综合网| 777色狠狠一区二区三区| 91精品欧美久久久久久动漫| 欧美一区二区免费| 欧美zozozo| 日本一区二区三区国色天香| 国产精品青草久久| 亚洲欧洲av在线| 亚洲午夜免费视频| 午夜视频一区二区三区| 日本午夜精品一区二区三区电影| 奇米888四色在线精品| 国产在线不卡一卡二卡三卡四卡| 国产一区二区精品久久91| 国产成人午夜99999| 91免费看片在线观看| 欧美日韩一区 二区 三区 久久精品| 欧美日韩国产美女| 日韩欧美精品在线| 国产欧美精品一区| 亚洲综合男人的天堂| 日韩福利视频导航| 粉嫩一区二区三区性色av| 91女厕偷拍女厕偷拍高清| 91精品国产欧美一区二区18| 精品成人一区二区三区| 国产精品卡一卡二| 亚洲高清视频在线| 国产精品一区二区久久不卡 | 国产乱国产乱300精品| 成人免费黄色大片| 欧美精品在欧美一区二区少妇| 精品久久久久久久久久久久包黑料| 欧美极品美女视频| 丝袜美腿一区二区三区| 国产激情91久久精品导航 | 91精品在线一区二区| 欧美日韩国产大片| 亚洲福利电影网| 日韩电影在线观看网站| 色综合久久66| 在线观看视频一区| 91麻豆精品国产综合久久久久久| 一区二区在线观看免费 | 26uuu国产在线精品一区二区| 国产91色综合久久免费分享| 国产乱码一区二区三区| 在线观看av一区二区| 国产午夜精品一区二区三区四区| 亚洲欧美另类久久久精品2019| 久久福利资源站| 91在线视频在线| 国产午夜亚洲精品不卡| 奇米影视一区二区三区| 色婷婷久久久久swag精品| 久久精品日韩一区二区三区| 日韩激情av在线| 欧洲精品视频在线观看| 国产精品色一区二区三区| 久久91精品久久久久久秒播| 欧美麻豆精品久久久久久| 亚洲视频在线一区| 国产精品99久久久久久有的能看| 欧美一区二区三区小说| 亚洲国产人成综合网站| 91网站最新网址| 一区二区中文视频| 风间由美性色一区二区三区| 日韩精品一区二区三区四区视频 | 成人一区二区视频| 精品国精品国产| 美女性感视频久久| 91精品国产丝袜白色高跟鞋| 国产成人精品aa毛片| 精品乱人伦小说| 狠狠网亚洲精品| 日韩欧美国产一区二区在线播放| 天天综合网 天天综合色| 欧美日韩成人在线| 日韩二区三区四区| 欧美一卡2卡3卡4卡| 美女精品自拍一二三四|