亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? mappings.m

?? matlab 模式識別工具包 希望能對你們有用
?? M
字號:
%MAPPINGS Info on the mapping class construction of PRTools% % This is not a command, just an information file% % In the Pattern Recognition Toolbox PRTools there are many commands to train % and use mappings between spaces of different (or equal) dimensionalities. For % example:% %    if    A  is a m x k dataset (m objects in a k-dimensional space)%    and   W  is a k x n mapping (map from k to n dimensions)%    then A*W is a m x n dataset (m objects in a n-dimensional space)% % Mappings can be linear (e.g. a rotation) as well as nonlinear (e.g. a neural % network). Typically they can be used for classifiers. In that case a k x n % mapping maps a k-feature data vector on the output space of an n-class % classifier (exception: 2-class classifiers like discriminant functions may be % implemented by a mapping to a 1-dimensional space like the distance to the % discriminant, n = 1).% % Mappings are of the datatype 'mapping' (class(W) is 'mapping'), have a size % of [k,n] if they map from k to n dimensions. Mappings can be instructed to % assign labels to the output columns, e.g. the class names. These labels can % be retrieved by% %    labels = getlab(W); before the mapping, or%    labels = getlab(A*W); after the dataset A is mapped by W.% % Mappings can be learned from examples, (labeled) objects stored in a dataset % A (see datasets), for instance by training a classifier:% %    W3 = ldc(A);       the normal densities based linear classifier%    W2 = knnc(A,3);    the 3-nearest neighbor rule%    W1 = svc(A,'p',2); the support vector classifier based on  a 2-nd order%                       polynomial kernel% % Untrained or empty mappings are sometimes very useful. Here the dataset is % replaced by an empty set or entirely skipped: %    V1 = ldc; V2 = knnc([],a); V3 = svc([],'p'2);% Such mappings can be trained later by%    W1 = A*V1; W2 = A*V2; W3 = A*V3;% The mapping of a testset B by B*W1 is now equivalent to B*(A*V1) or even, % irregulary but very handy to A*V1*B (or even A*ldc*B). Note that expressions % are evaluated from left to right, so B*A*V1 may result  in an error as the % multiplication of the two datasets (B*A) is executed first.% % Users can add new mappings or classifiers by a single routine that should% support the following type of calls:%% W = newmapm([], par1, par2, ...); Defines the untrained, empty mapping.% W = newmapm(A, par1, par2, ...); Defines the map trained by dataset A.% B = newmapm(A, W); Defines the mapping of  A on W, resulting in B.%% For an example list the routine subsc.m.% Below more information is given on user defined mappings.%% Some trainable mappings do not depend on class labels and can be interpreted % as finding a space that approximates as good as possible the original dataset % given some conditions and measures. Examples are the Karhunen-Loeve Mapping % (klm) which may be used for PCA and the Support Vector Mapping (svm) by which % nonlinear, kernel PCA mappings can be computed% % In addition to trainable mappings, there are fixed mappings, which operation % is not computed from a trainingset but defined by at most a few parameters. % Most of them can be set by cmapm. Other ones are sigm and invsigm.% % The result D of a mapping of a testset on a trained classifier, %%    D = B*W1%% is again a dataset, storing for each object in B the output values of the % classifier. These values, usually between -inf and inf  can be interpreted as % similarities: the larger, the more similar with the corresponding class. These % number can be mapped on the [0,1] interval by sigm:%%    D = B*W1*sigm%% The values in a single row (object) don't necessarily sum to one. This can be % achieved by the fixed mapping normm:%%    D = B*W1*sigm*normm%% which is equivalent to B*W1*classc. Effectively a mapping W is converted into % a classifier by W*classc, which maps objects on the normalized [0,1] output % space. Usually a mapping that can be converted into a classifier in this way, is% scaled such by a multiplicative constant that these numbers optimally represent% (in the maximum likelihood sense) the posterior probabilities for the training% data. The resulting output dataset D has column labels for the classes and row% labels for the objects. The class labels of the maximum values for each object% can be retrieved by%%    labels = D*classd; or labels = classd(D);%% A global classification error follows from%%    e = D*testd; or e = testd(D);%% Mappings can be combined in the following ways:% % sequential: W = W1 * W2 * W3 (equal inner dimensions)% stacked   : W = [W1, W2, W3] (equal numbers of 'rows' (input dimensions))% parallel  : W = [W1; W2 ;W3] (unrestricted)% % The output size of the parallel mapping is irregulary equal to (k1+k2+k3) x % (n1+n2+n3) as the output combining of columns is undefined. In a stacked or % parallel mapping columns with the same label can be combined by various % combiners like maxc, meanc and prodc. If the classifiers W1, W2 and W3 are % trained for the same n classes, their output labels are the same and may be% combined by W = prodc([W1;W2;W3]) into a (k1+k2+k3) x n classifier.% % W for itself, or display(W) lists the size of a mapping or classifer W  as well % as the routine or section in @mapping/mtimes used for computing a mapping A*W.% The construction of a combined mapping may be inspected by parsc(W). % % Affine mappings (e.g. constructed by klm) may be transposed. This is useful% for backprojection of data into the original space. For instance:% W = klm(A,3); % computes 3-dimensional KL transform% B = A*W;      % maps A on W, resulting in B;% C = B*W';     % back-projection of B in the original space, resulting in C;% As a result eye(3)*W' is a dataset containing the eigenvectors found by klm% in the original space.% % A mapping may be given an outputselection by W = W(:,J), in which J is a set % of indices pointing to the desired classes.%%    B = A*W(:,J); is equivalent to B = A*W; B = B(:,J);%% Input selection is not possible for a mapping.% % User defined mappings% ---------------------%% Users may define their own mapping (e.g. mapexm) using the mapping constructor.% In this constructor call the first parameter should be the name of the routine% that handles the mapping of an incoming dataset. If the mapping is trained% by W = mapexm(A,pars) and W is set in mapexm by W = mapping('mapexm', ...), % then PRTools calls mapexm(A,W) for the evaluation of A*W. An untrained mapping% should be defined inside mapexm by W = mapping('mapexm',{pars}), to be called% by W = A*mapexm([],pars). See subsc.m for an example.%% Fixed mappings are defined as W = mapping('mapexm','fixed',{parameters}).% The parameters are the ones needed for calling mapexm, so A*W is evaluated% as mapexm(A,p1,p2,...) if {parameters} = {p1,p2}. Fixed mappings are not called% for training and have usually an undetermined size. Size checking is thereby not% done. An example is cmapm.%% Combiner mappings are defined as W = mapping('mapexm','combiner',{parameters}).% They can be functions of other mappings. An example is is classc. The call% V = ldc(A)*classc is thereby evaluated as V = classc(ldc(A)), resulting% in a new mapping V. Typically this will be a trained mapping or a fixed mapping.%% A trained mapping is computed for a training set, e.g. W = ldc(A). It thereby% differs from a fixed mapping. Consequently it has determined sizes for the% dimensions of the input and the output space. The first is typically the% feature size of A. For classifiers the dimension of the output space is% typically the number of classes. Two-class classifiers may return an output% space of just one dimension, i.e. the distance to the separation function.%% An untrained mapping just stores the mapping or classifier to be used for% later training, e.g. W = klm([],0.95). Now A*W is evaluated as klm(A,0.95).% Untrained mappings may also be combined, both sequentially as well as% stacked. An example is W = klm([],0.95) * fisherc. The training command% A*W is now evaluated as klm(A,0.95)*fisherc(A*klm(A,0.95)). Another example% is W = [nmc fisherc qdc]*maxc. B*(A*W) is now evaluated as % maxc([B*nmc(A) B*fisherc(A) B*qdc(A)]).%% Differences between the four types of mappings are now summarized for a dataset % A and a mapping W:%% A*W     -  fixed     : results in a dataset, no size checking%         -  combiner  : treated as fixed%         -  untrained : results in a mapping%         -  trained   : results in a dataset, size checking%% Suppose V is a fixed mapping, then for the various possibilities of% the mapping W holds:%% A*(V*W) -  fixed     : evaluated as A*V*W, resulting in a dataset%         -  combiner  : evaluated as A*V*W, resulting in a dataset%         -  untrained : evaluated as V*(A*V*W), resulting in a mapping%         -  trained   : evaluated as A*V*W, resulting in a dataset%% Suppose V is an untrained mapping, then for the various possibilities of% the mapping W holds:%% A*(V*W) -  fixed     : evaluated as A*V*W, resulting in a mapping%         -  combiner  : evaluated as A*(V*W), resulting in a mapping%         -  untrained : evaluated as A*V*(A*(A*V)*W), resulting in a mapping%         -  trained   : evaluated as A*V*W, resulting in a mapping%% Suppose V is a trained mapping, then for the various possibilities of% the mapping W holds:%% A*(V*W) -  fixed     : evaluated as A*V*W, resulting in a dataset%         -  combiner  : evaluated as A*(V*W), resulting in a dataset%         -  untrained : evaluated as V*(A*V*W), resulting in a mapping%         -  trained   : evaluated as A*V*W, resulting in a dataset

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲人成电影网站色mp4| 亚洲老妇xxxxxx| 欧美日韩视频在线一区二区| 成人免费精品视频| 成人av影视在线观看| 成人免费视频一区| 成人午夜视频在线观看| 国产iv一区二区三区| av在线播放成人| 日本道色综合久久| 欧美视频在线一区二区三区| 欧美精品v日韩精品v韩国精品v| 欧美日韩另类一区| 日韩欧美第一区| 久久精品一级爱片| 亚洲欧洲国产日韩| 午夜精品视频一区| 久久精品免费看| 国产a精品视频| 日本二三区不卡| 日韩一区二区电影在线| 久久一日本道色综合| 国产精品青草久久| 偷窥少妇高潮呻吟av久久免费| 日韩和欧美一区二区三区| 国产在线精品一区二区不卡了| 国产福利91精品一区| 在线亚洲人成电影网站色www| 欧美日韩一区二区三区高清| 欧美tickling挠脚心丨vk| 国产精品免费久久| 日日骚欧美日韩| 国产盗摄女厕一区二区三区 | 日韩一区二区免费视频| 久久亚洲一区二区三区明星换脸 | 99久久国产综合精品色伊| 欧美日韩在线播放一区| 久久综合九色欧美综合狠狠| 亚洲精品日日夜夜| 国产麻豆欧美日韩一区| 欧美日韩一区二区三区免费看| 精品国产一区a| 亚洲精品你懂的| 精品一区二区久久久| 日本高清无吗v一区| 久久美女艺术照精彩视频福利播放 | 国产日韩欧美不卡在线| 亚洲一区中文在线| 国产suv精品一区二区6| 日韩美女主播在线视频一区二区三区| 亚洲图片你懂的| 国产69精品久久777的优势| 欧美精品粉嫩高潮一区二区| 亚洲欧美一区二区不卡| 懂色av噜噜一区二区三区av| 欧美电影免费观看完整版| 亚洲一区二区精品视频| 成人aaaa免费全部观看| 久久免费视频一区| 久久草av在线| 欧美一级黄色录像| 亚洲地区一二三色| 欧美伊人久久大香线蕉综合69 | 婷婷一区二区三区| 欧美在线观看视频一区二区三区 | 欧美日韩在线播| ●精品国产综合乱码久久久久| 国产精品一二一区| 337p日本欧洲亚洲大胆精品| 石原莉奈在线亚洲二区| 欧美视频一区在线| 亚洲成av人在线观看| 91福利社在线观看| 亚洲国产精品一区二区www在线| 91偷拍与自偷拍精品| 国产精品国产a| 97久久精品人人爽人人爽蜜臀| 亚洲国产高清不卡| av电影一区二区| 一区二区久久久久| 欧美日韩国产一级| 亚洲成精国产精品女| 欧美日本国产一区| 日本午夜一区二区| 久久伊人中文字幕| 成人h动漫精品一区二| 亚洲欧美二区三区| 欧美日韩成人一区二区| 日韩电影一区二区三区| 日韩免费看网站| 国产福利一区二区三区视频在线| 国产精品五月天| 色婷婷国产精品| 日本美女视频一区二区| 久久久久久久久免费| 91最新地址在线播放| 亚洲成人久久影院| 欧美精品一区二区高清在线观看| 大陆成人av片| 亚洲国产三级在线| 欧美精品一区二区三区蜜桃| 成人免费av资源| 图片区小说区国产精品视频| 精品国精品国产尤物美女| av电影在线不卡| 日日摸夜夜添夜夜添精品视频| 欧美精品一区二区三区蜜臀| 色综合天天综合在线视频| 欧美aaa在线| 亚洲精品一二三| 精品久久久久久久久久久院品网| 成人毛片在线观看| 天使萌一区二区三区免费观看| 国产亚洲一区字幕| 欧美日韩一本到| 国产91露脸合集magnet| 视频在线在亚洲| 亚洲欧美日韩国产手机在线 | 亚洲精品欧美综合四区| 精品国产区一区| 欧美午夜一区二区| 国产aⅴ综合色| 日本欧美一区二区在线观看| 亚洲视频一区二区免费在线观看 | 国产成人亚洲综合a∨婷婷图片| 亚洲少妇中出一区| 欧美国产亚洲另类动漫| 日韩视频中午一区| 欧美色倩网站大全免费| 99久久99久久精品免费观看| 国产一区二区三区四区在线观看| 亚洲成年人网站在线观看| 日本一区二区三区高清不卡| 欧美videos大乳护士334| 欧美日韩精品欧美日韩精品| 91影院在线免费观看| 国产精品一区二区91| 精品一区二区三区免费视频| 天堂成人免费av电影一区| 亚洲午夜免费电影| 亚洲欧美激情一区二区| 国产精品久久夜| 国产精品美女久久久久久久 | 欧美日韩在线播放三区四区| 色狠狠av一区二区三区| av中文字幕亚洲| 99在线精品一区二区三区| 成人激情综合网站| av欧美精品.com| jlzzjlzz亚洲日本少妇| 成人国产电影网| jlzzjlzz欧美大全| 色婷婷av久久久久久久| 色婷婷综合久久| 色悠悠久久综合| 欧美日韩在线综合| 欧美视频三区在线播放| 欧美日韩精品一区二区三区 | 丝袜亚洲精品中文字幕一区| 亚洲午夜一区二区三区| 日韩高清一区在线| 麻豆精品视频在线| 国产大片一区二区| 91亚洲国产成人精品一区二区三 | 9人人澡人人爽人人精品| 99久久国产综合精品麻豆| 在线观看免费成人| 91麻豆精品国产91久久久久| 日韩一级二级三级精品视频| 久久久国产午夜精品| 国产精品高潮久久久久无| 亚洲天天做日日做天天谢日日欢| 夜夜夜精品看看| 蜜臀av一区二区在线观看| 顶级嫩模精品视频在线看| av在线播放不卡| 欧美人伦禁忌dvd放荡欲情| 日韩一区二区三区在线观看| 国产欧美一区二区三区鸳鸯浴| 亚洲天天做日日做天天谢日日欢| 亚洲影视在线播放| 国产麻豆精品一区二区| 日本精品免费观看高清观看| 91精品国产综合久久小美女| 久久九九全国免费| 亚洲国产aⅴ天堂久久| 国产精品一区二区久久精品爱涩| 91社区在线播放| 日韩一区二区高清| 亚洲人一二三区| 免费高清成人在线| 一本高清dvd不卡在线观看| 在线播放欧美女士性生活| 中文成人av在线| 美女一区二区三区| 在线视频观看一区| 中文字幕不卡在线播放| 蜜桃一区二区三区在线| 色综合久久久久网| 2欧美一区二区三区在线观看视频|