?? geocent.c
字號(hào):
/***************************************************************************/
/* RSC IDENTIFIER: GEOCENTRIC
*
* ABSTRACT
*
* This component provides conversions between Geodetic coordinates (latitude,
* longitude in radians and height in meters) and Geocentric coordinates
* (X, Y, Z) in meters.
*
* ERROR HANDLING
*
* This component checks parameters for valid values. If an invalid value
* is found, the error code is combined with the current error code using
* the bitwise or. This combining allows multiple error codes to be
* returned. The possible error codes are:
*
* GEOCENT_NO_ERROR : No errors occurred in function
* GEOCENT_LAT_ERROR : Latitude out of valid range
* (-90 to 90 degrees)
* GEOCENT_LON_ERROR : Longitude out of valid range
* (-180 to 360 degrees)
* GEOCENT_A_ERROR : Semi-major axis less than or equal to zero
* GEOCENT_INV_F_ERROR : Inverse flattening outside of valid range
* (250 to 350)
*
*
* REUSE NOTES
*
* GEOCENTRIC is intended for reuse by any application that performs
* coordinate conversions between geodetic coordinates and geocentric
* coordinates.
*
*
* REFERENCES
*
* An Improved Algorithm for Geocentric to Geodetic Coordinate Conversion,
* Ralph Toms, February 1996 UCRL-JC-123138.
*
* Further information on GEOCENTRIC can be found in the Reuse Manual.
*
* GEOCENTRIC originated from : U.S. Army Topographic Engineering Center
* Geospatial Information Division
* 7701 Telegraph Road
* Alexandria, VA 22310-3864
*
* LICENSES
*
* None apply to this component.
*
* RESTRICTIONS
*
* GEOCENTRIC has no restrictions.
*
* ENVIRONMENT
*
* GEOCENTRIC was tested and certified in the following environments:
*
* 1. Solaris 2.5 with GCC version 2.8.1
* 2. Windows 95 with MS Visual C++ version 6
*
* MODIFICATIONS
*
* Date Description
* ---- -----------
* 25-02-97 Original Code
*
*/
/***************************************************************************/
/*
* INCLUDES
*/
#include <math.h>
#include "geocent.h"
/*
* math.h - is needed for calls to sin, cos, tan and sqrt.
* geocent.h - is needed for Error codes and prototype error checking.
*/
/***************************************************************************/
/*
* DEFINES
*/
#define PI 3.14159265358979323e0
#define PI_OVER_2 (PI / 2.0e0)
#define FALSE 0
#define TRUE 1
#define COS_67P5 0.38268343236508977 /* cosine of 67.5 degrees */
#define AD_C 1.0026000 /* Toms region 1 constant */
/***************************************************************************/
/*
* GLOBAL DECLARATIONS
*/
/* Ellipsoid parameters, default to WGS 84 */
double Geocent_a = 6378137.0; /* Semi-major axis of ellipsoid in meters */
double Geocent_f = 1 / 298.257223563; /* Flattening of ellipsoid */
double Geocent_e2 = 0.0066943799901413800; /* Eccentricity squared */
double Geocent_ep2 = 0.00673949675658690300; /* 2nd eccentricity squared */
/*
* These state variables are for optimization purposes. The only function
* that should modify them is Set_Geocentric_Parameters.
*/
/***************************************************************************/
/*
* FUNCTIONS
*/
long Set_Geocentric_Parameters (double a,
double f)
{ /* BEGIN Set_Geocentric_Parameters */
/*
* The function Set_Geocentric_Parameters receives the ellipsoid parameters
* as inputs and sets the corresponding state variables.
*
* a : Semi-major axis of ellipsoid, in meters. (input)
* f : Flattening of ellipsoid. (input)
*/
double inv_f = 1 / f;
long Error_Code = GEOCENT_NO_ERROR;
if (a <= 0.0)
Error_Code |= GEOCENT_A_ERROR;
if ((inv_f < 250) || (inv_f > 350))
{ /* Inverse flattening must be between 250 and 350 */
Error_Code |= GEOCENT_INV_F_ERROR;
}
if (!Error_Code)
{
Geocent_a = a;
Geocent_f = f;
Geocent_e2 = 2 * Geocent_f - Geocent_f * Geocent_f;
Geocent_ep2 = (1 / (1 - Geocent_e2)) - 1;
}
return (Error_Code);
} /* END OF Set_Geocentric_Parameters */
void Get_Geocentric_Parameters (double *a,
double *f)
{ /* BEGIN Get_Geocentric_Parameters */
/*
* The function Get_Geocentric_Parameters returns the ellipsoid parameters
* to be used in geocentric coordinate conversions.
*
* a : Semi-major axis of ellipsoid, in meters. (output)
* f : Flattening of ellipsoid. (output)
*/
*a = Geocent_a;
*f = Geocent_f;
} /* END OF Get_Geocentric_Parameters */
long Convert_Geodetic_To_Geocentric (double Latitude,
double Longitude,
double Height,
double *X,
double *Y,
double *Z)
{ /* BEGIN Convert_Geodetic_To_Geocentric */
/*
* The function Convert_Geodetic_To_Geocentric converts geodetic coordinates
* (latitude, longitude, and height) to geocentric coordinates (X, Y, Z),
* according to the current ellipsoid parameters.
*
* Latitude : Geodetic latitude in radians (input)
* Longitude : Geodetic longitude in radians (input)
* Height : Geodetic height, in meters (input)
* X : Calculated Geocentric X coordinate, in meters (output)
* Y : Calculated Geocentric Y coordinate, in meters (output)
* Z : Calculated Geocentric Z coordinate, in meters (output)
*
*/
long Error_Code = GEOCENT_NO_ERROR;
double Rn; /* Earth radius at location */
double Sin_Lat; /* sin(Latitude) */
double Sin2_Lat; /* Square of sin(Latitude) */
double Cos_Lat; /* cos(Latitude) */
if ((Latitude < -PI_OVER_2) || (Latitude > PI_OVER_2))
{ /* Latitude out of range */
Error_Code |= GEOCENT_LAT_ERROR;
}
if ((Longitude < -PI) || (Longitude > (2*PI)))
{ /* Longitude out of range */
Error_Code |= GEOCENT_LON_ERROR;
}
if (!Error_Code)
{ /* no errors */
if (Longitude > PI)
Longitude -= (2*PI);
Sin_Lat = sin(Latitude);
Cos_Lat = cos(Latitude);
Sin2_Lat = Sin_Lat * Sin_Lat;
Rn = Geocent_a / (sqrt(1.0e0 - Geocent_e2 * Sin2_Lat));
*X = (Rn + Height) * Cos_Lat * cos(Longitude);
*Y = (Rn + Height) * Cos_Lat * sin(Longitude);
*Z = ((Rn * (1 - Geocent_e2)) + Height) * Sin_Lat;
}
return (Error_Code);
} /* END OF Convert_Geodetic_To_Geocentric */
void Convert_Geocentric_To_Geodetic (double X,
double Y,
double Z,
double *Latitude,
double *Longitude,
double *Height)
{ /* BEGIN Convert_Geocentric_To_Geodetic */
/*
* The function Convert_Geocentric_To_Geodetic converts geocentric
* coordinates (X, Y, Z) to geodetic coordinates (latitude, longitude,
* and height), according to the current ellipsoid parameters.
*
* X : Geocentric X coordinate, in meters. (input)
* Y : Geocentric Y coordinate, in meters. (input)
* Z : Geocentric Z coordinate, in meters. (input)
* Latitude : Calculated latitude value in radians. (output)
* Longitude : Calculated longitude value in radians. (output)
* Height : Calculated height value, in meters. (output)
*
* The method used here is derived from 'An Improved Algorithm for
* Geocentric to Geodetic Coordinate Conversion', by Ralph Toms, Feb 1996
*/
/* Note: Variable names follow the notation used in Toms, Feb 1996 */
double W; /* distance from Z axis */
double W2; /* square of distance from Z axis */
double T0; /* initial estimate of vertical component */
double T1; /* corrected estimate of vertical component */
double S0; /* initial estimate of horizontal component */
double S1; /* corrected estimate of horizontal component */
double Sin_B0; /* sin(B0), B0 is estimate of Bowring aux variable */
double Sin3_B0; /* cube of sin(B0) */
double Cos_B0; /* cos(B0) */
double Sin_p1; /* sin(phi1), phi1 is estimated latitude */
double Cos_p1; /* cos(phi1) */
double Rn; /* Earth radius at location */
double Sum; /* numerator of cos(phi1) */
int At_Pole; /* indicates location is in polar region */
double Geocent_b = Geocent_a * (1 - Geocent_f); /* Semi-minor axis of ellipsoid, in meters */
At_Pole = FALSE;
if (X != 0.0)
{
*Longitude = atan2(Y,X);
}
else
{
if (Y > 0)
{
*Longitude = PI_OVER_2;
}
else if (Y < 0)
{
*Longitude = -PI_OVER_2;
}
else
{
At_Pole = TRUE;
*Longitude = 0.0;
if (Z > 0.0)
{ /* north pole */
*Latitude = PI_OVER_2;
}
else if (Z < 0.0)
{ /* south pole */
*Latitude = -PI_OVER_2;
}
else
{ /* center of earth */
*Latitude = PI_OVER_2;
*Height = -Geocent_b;
return;
}
}
}
W2 = X*X + Y*Y;
W = sqrt(W2);
T0 = Z * AD_C;
S0 = sqrt(T0 * T0 + W2);
Sin_B0 = T0 / S0;
Cos_B0 = W / S0;
Sin3_B0 = Sin_B0 * Sin_B0 * Sin_B0;
T1 = Z + Geocent_b * Geocent_ep2 * Sin3_B0;
Sum = W - Geocent_a * Geocent_e2 * Cos_B0 * Cos_B0 * Cos_B0;
S1 = sqrt(T1*T1 + Sum * Sum);
Sin_p1 = T1 / S1;
Cos_p1 = Sum / S1;
Rn = Geocent_a / sqrt(1.0 - Geocent_e2 * Sin_p1 * Sin_p1);
if (Cos_p1 >= COS_67P5)
{
*Height = W / Cos_p1 - Rn;
}
else if (Cos_p1 <= -COS_67P5)
{
*Height = W / -Cos_p1 - Rn;
}
else
{
*Height = Z / Sin_p1 + Rn * (Geocent_e2 - 1.0);
}
if (At_Pole == FALSE)
{
*Latitude = atan(Sin_p1 / Cos_p1);
}
} /* END OF Convert_Geocentric_To_Geodetic */
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -