亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? tfdemo2.m

?? 時頻分析工具箱
?? M
字號:
%TFDEMO2 Non stationary signals

%	O. Lemoine - May 1996. 
%	Copyright (c) CNRS.

clc; zoom on; clf; 
echo on;

% Time and frequency localizations and the Heisenberg-Gabor inequality 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% The time and frequency localizations can be evaluated thanks to 
% the M-files loctime.m and locfreq.m of the Toolbox. The first one
% gives the average time center (tm) and the duration (T) of a signal,
% and the second one the average normalized frequency (num) and the 
% normalized bandwidth (B). For example, for a linear chirp with a 
% Gaussian amplitude modulation, we obtain :

sig=fmlin(256).*amgauss(256); 
subplot(211); plot(real(sig)); axis([1 256 -1 1]); grid;
xlabel('Time'); ylabel('Real part'); title('Signal in time');
dsp=fftshift(abs(fft(sig)).^2);
subplot(212); plot((-128:127)/256,dsp); grid;
xlabel('Normalized frequency'); ylabel('Squared modulus'); 
title('Energy spectrum');
[tm ,T]=loctime(sig) 
[num,B]=locfreq(sig)

% Press any key to continue...
 
pause; clc;

% One interesting property of this product T*B is that it is lower
% bounded : T * B >= 1. This constraint, known as the HEISENBERG-GABOR 
% INEQUALITY, illustrates the fact that a signal can not have 
% simultaneously an arbitrarily small support in time and in frequency.
% If we consider a Gaussian signal,

sig=amgauss(256); 
subplot(211); plot(real(sig)); axis([1 256 0 1]); grid;
xlabel('Time'); ylabel('Real part'); title('Signal in time');
dsp=fftshift(abs(fft(sig)).^2);
subplot(212); plot((-128:127)/256,dsp); grid;
xlabel('Normalized frequency'); ylabel('Squared modulus'); 
title('Energy spectrum');
[tm,T]=loctime(sig); 
[fm,B]=locfreq(sig);
[T,B,T*B]

% we can see that it minimizes the time-bandwidth product, and thus is 
% the most concentrated signal in the time-frequency plane.
%
% Press any key to continue...
 
pause; clc;

% Instantaneous frequency and group delay
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% The instantaneous frequency, defined for any analytic signal xa(t) as 
% the derivative of its phase, if(t) = 1/(2pi) d arg{xa(t)} / dt, can
% be a good solution to describe a signal simultaneously in time and in 
% frequency :

sig=fmlin(256); t=2:255; clf;
ifr=instfreq(sig); plotifl(t,ifr,sig(t)); grid;
axis([1 256 0 0.5]); xlabel('Time'); ylabel('Normalized frequency'); 
title('Instantaneous frequency estimation');
 
% As we can see from this plot, the instantaneous frequency shows with
% success the local frequency behavior as a function of time. 
%
% Press any key to continue...
 
pause;

% In a dual way, the local time behavior as a function of frequency can 
% be described by the GROUP DELAY : 
%	tx(nu) = -1/(2*pi) * d arg{Xa(nu)}/d nu.
% This quantity measures the average time arrival of the frequency nu. 
% For example, with signal sig of the previous example, we obtain :

fnorm=0:.05:.5; gd=sgrpdlay(sig,fnorm); plot(gd,fnorm); grid;
xlabel('Time'); ylabel('Normalized frequency'); 
title('Group delay estimation'); axis([1 256 0 0.5]);
 
% Press any key to continue...
 
pause; clc;

% Be careful of the fact that in general, instantaneous frequency and 
% group delay define two different curves in the time-frequency plane. 
% They are approximatively identical only when the time-bandwidth product 
% TB is large. To illustrate this point, let us consider a simple example.
% We calculate the instantaneous frequency and group delay of two signals, 
% the first one having a large TB product, and the second one a small TB
% product:

t=2:255; 
sig1=amgauss(256,128,90).*fmlin(256,0,0.5);
[tm,T1]=loctime(sig1); [fm,B1]=locfreq(sig1); T1*B1
ifr1=instfreq(sig1,t); f1=linspace(0,0.5-1/256,256);
gd1=sgrpdlay(sig1,f1); subplot(211); plot(t,ifr1,'*',gd1,f1,'-')
axis([1 256 0 0.5]); grid; xlabel('Time'); 
ylabel('Normalized frequency'); 

sig2=amgauss(256,128,30).*fmlin(256,0.2,0.4);
[tm,T2]=loctime(sig2); [fm,B2]=locfreq(sig2); T2*B2
ifr2=instfreq(sig2,t); f2=linspace(0.2,0.4,256);
gd2=sgrpdlay(sig2,f2); subplot(212); plot(t,ifr2,'*',gd2,f2,'-')
axis([1 256 0.2 0.4]); grid; xlabel('Time'); 
ylabel('Normalized frequency'); 
 
% On the first plot, the two curves are almost superimposed (i.e. the
% instantaneous frequency is the inverse transform of the group delay),
% whereas on the second plot, the two curves are clearly different.
%
% Press any key to continue...
 
pause; clc;

% Synthesis of a mono-component non stationary signal
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% One part of the Time-Frequency Toolbox is dedicated to the generation 
% of non stationary signals. In that part, three groups of M-files are 
% available:
%
%	- The first one allows to synthesize different amplitude
% modulations. These M-files begin with the prefix 'am'. 
%	- The second one proposes different frequency modulations.  These
% M-files begin with 'fm'. 
%	- The third one is a set of pre-defined signals. Some of them begin
% with 'ana' because these signals are analytic, other have special names.
% 
% The first two groups of files can be combined to produce a large class of
% non stationary signals, multiplying an amplitude modulation and a 
% frequency modulation. For example, we can multiply a linear frequency 
% modulation by a gaussian amplitude modulation :

fm1=fmlin(256,0,0.5); am1=amgauss(256);
sig1=am1.*fm1; clf; plot(real(sig1)); axis([1 256 -1 1]); 
xlabel('Time'); ylabel('Real part');
 
% By default, the signal is centered on the middle (256/2=128), and its
% spread is T=32. If you want to center it at an other position t0, just
% replace am1 by amgauss(256,t0). 
%
% Press any key to continue...
 
pause; clc; 

% A second example can be to multiply a pure frequency (constant frequency 
% modulation) by a one-sided exponential window starting at t=100 :

fm2=fmconst(256,0.2); am2=amexpo1s(256,100);
sig2=am2.*fm2; plot(real(sig2)); axis([1 256 -1 1]); 
xlabel('Time'); ylabel('Real part');
 
% Press any key to continue...
 
pause; 

% As a third example of mono-component non-stationary signal, we can 
% consider the M-file doppler.m : this function generates a modelization 
% of the signal received by a fixed observer from a moving target emitting 
% a pure frequency.

[fm3,am3]=doppler(256,200,4000/60,10,50);
sig3=am3.*fm3; plot(real(sig3)); axis([1 256 -0.4 0.4]); 
xlabel('Time'); ylabel('Real part');

% This example corresponds to a target (a car for instance) moving 
% straightly at the speed of 50 m/s, and passing at 10 m from the observer
% (the radar!). The rotating frequency of the engine is 4000 revolutions 
% per minute, and the sampling frequency of the radar is 200 Hz.
%
% Press any key to continue...
 
pause; clc; 

%   In order to have a more realistic modelization of physical signals, we
% may need to add some complex noise on these signals. To do so, two M-files
% of the Time-Frequency Toolbox are proposed : noisecg.m generates a complex
% white or colored Gaussian noise, and noisecu.m, a complex white uniform 
% noise. For example, if we add complex colored Gaussian noise on the signal
% sig1 with a signal to noise ratio of -10 dB,

noise=noisecg(256,.8);
sign=sigmerge(sig1,noise,-10); plot(real(sign)); 
Min=min(real(sign)); Max=max(real(sign));
xlabel('Time'); ylabel('Real part'); axis([1 256 Min Max]); 

% the deterministic signal sig1 is now almost imperceptible from the noise.
%
% Press any key to continue...
 
pause; clc; 


% Multi-component non stationary signals 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
% The notion of instantaneous frequency implicitly assumes that, at each
% time instant, there exists only a single frequency component. A dual
% restriction applies to the group delay : the implicit assumption is that
% a given frequency is concentrated around a single time instant. Thus, if
% these assumptions are no longer valid, which is the case for most of the
% multi-component signals, the result obtained using the instantaneous
% frequency or the group delay is meaningless.
%
% For example, let's consider the superposition of two linear frequency 
% modulations :

N=128; x1=fmlin(N,0,0.2); x2=fmlin(N,0.3,0.5);
x=x1+x2;

% At each time instant t, an ideal time-frequency representation should
% represent two different frequencies with the same amplitude. The results
% obtained using the instantaneous frequency and the group delay are of
% course completely different, and therefore irrelevant :

ifr=instfreq(x); subplot(211); plot(ifr);
xlabel('Time'); ylabel('Normalized frequency'); axis([1 N  0 0.5]);
fnorm=0:0.01:0.5; gd=sgrpdlay(x,fnorm); subplot(212); plot(gd,fnorm);
xlabel('Time'); ylabel('Normalized frequency'); axis([1 N  0 0.5]);
 
% So these one-dimensional representations, instantaneous frequency and 
% group delay, are not sufficient to represent all the non stationary 
% signals. A further step has to be made towards two-dimensional mixed 
% representations, jointly in time and in frequency. 
%
% Press any key to continue...
 
pause; clc; 

% To have an idea of what can be made with an time-frequency decomposition,
% let's anticipate the following and have a look at the result obtained 
% with the Short Time Fourier Transform :

tfrstft(x); 

% Here two 'time-frequency components' can be clearly seen, located around
% the locus of the two frequency modulations.
%

echo off

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
色综合色综合色综合色综合色综合| 国产亚洲精品免费| 国产精品久久久久久久裸模| jlzzjlzz亚洲日本少妇| 国产精品美女久久久久久久| 色诱亚洲精品久久久久久| 成人av网站在线观看| 亚洲成av人**亚洲成av**| 6080yy午夜一二三区久久| 国产在线视频精品一区| 亚洲女人小视频在线观看| 欧美放荡的少妇| 成人丝袜18视频在线观看| 日韩黄色一级片| 亚洲精品久久久蜜桃| 欧美精品一区二区高清在线观看| 日本怡春院一区二区| 久久久久亚洲蜜桃| 欧美片网站yy| www.性欧美| 精品视频一区 二区 三区| 丁香激情综合五月| 欧美少妇xxx| 成人国产视频在线观看| 欧美色图一区二区三区| 欧美成人一区二区三区片免费| 在线观看日韩高清av| 国产福利一区在线观看| 蜜臀va亚洲va欧美va天堂 | 日本一二三四高清不卡| 在线电影一区二区三区| 337p日本欧洲亚洲大胆精品| 自拍偷拍欧美激情| 国产精品无码永久免费888| 一区二区三区色| 亚洲丝袜美腿综合| 日本sm残虐另类| 日韩高清中文字幕一区| 福利电影一区二区| 成人黄色免费短视频| 欧美精品1区2区| 国产精品免费免费| 国产曰批免费观看久久久| 蜜桃精品视频在线| 在线亚洲欧美专区二区| 国产日韩欧美一区二区三区综合 | 99久久综合国产精品| 91精品久久久久久久99蜜桃| 国产精品久久久久久久浪潮网站 | 国产一区二区看久久| 欧美日韩中文字幕一区| 国产精品国产三级国产三级人妇 | 久久伊人中文字幕| 性久久久久久久久久久久 | 日韩国产欧美一区二区三区| 99精品一区二区三区| 色国产精品一区在线观看| 欧亚一区二区三区| 欧美激情在线免费观看| 国产精品资源网站| 99久久亚洲一区二区三区青草| 日韩美女在线视频| 中文子幕无线码一区tr| 国产在线精品一区二区夜色| 欧美精选午夜久久久乱码6080| 亚洲女人的天堂| 99视频精品全部免费在线| 国产精品久久久久影院亚瑟 | 亚洲乱码一区二区三区在线观看| av电影一区二区| 综合亚洲深深色噜噜狠狠网站| 成人黄色综合网站| 国产精品激情偷乱一区二区∴| 成人av动漫在线| 中文字幕一区二| 久久99久久久久| 国内成人精品2018免费看| 欧美成人福利视频| 激情综合网av| 欧美激情一区二区三区不卡| youjizz久久| 成人免费在线播放视频| 成人黄色国产精品网站大全在线免费观看 | 一区二区三区四区在线免费观看| 99re6这里只有精品视频在线观看| 国产精品女主播在线观看| 91最新地址在线播放| 亚洲精品成人在线| 欧美一区二区私人影院日本| 国产精品毛片久久久久久| 91在线看国产| 日日夜夜免费精品| 亚洲精品一区二区三区蜜桃下载 | 国产精品女人毛片| 欧美伊人久久久久久午夜久久久久| 亚洲第一福利视频在线| 日韩免费观看高清完整版 | 不卡一区中文字幕| 亚洲午夜三级在线| 成人精品视频一区二区三区| 一区二区三区在线视频观看58| 884aa四虎影成人精品一区| 狠狠久久亚洲欧美| 亚洲素人一区二区| 日韩一区二区麻豆国产| 亚洲一二三四在线| 99精品1区2区| 麻豆精品一区二区综合av| 最新不卡av在线| 91精品国产综合久久精品app| 国产99一区视频免费| 亚洲一区二区三区国产| 国产丝袜欧美中文另类| 欧美日韩精品欧美日韩精品| 国产成人午夜精品5599| 午夜精品福利一区二区蜜股av| 欧美亚洲动漫精品| 国产一区二区三区黄视频 | 国产精华液一区二区三区| 一区二区三区四区在线免费观看| 精品久久久三级丝袜| 欧亚一区二区三区| a4yy欧美一区二区三区| 久久国产精品72免费观看| 亚欧色一区w666天堂| 亚洲另类一区二区| 国产精品理伦片| 久久日韩粉嫩一区二区三区| 欧美伦理电影网| 欧美伊人久久久久久午夜久久久久| 成人看片黄a免费看在线| 紧缚捆绑精品一区二区| 日本视频中文字幕一区二区三区| 一区二区三区免费网站| 亚洲国产精品传媒在线观看| 久久久久国产精品厨房| 精品国产一区二区三区av性色 | 日韩精品一区二区三区在线| 欧美日韩国产综合视频在线观看 | 成人免费看黄yyy456| 精品亚洲国内自在自线福利| 日韩精品免费专区| 亚洲国产毛片aaaaa无费看| 亚洲人精品午夜| 亚洲日本一区二区三区| 中文字幕一区二区视频| 亚洲色图欧美在线| 一区二区三区在线免费观看| 一区二区三区成人| 亚洲一区二区三区四区五区黄| 亚洲一区在线电影| 亚洲成在线观看| 日本欧美在线观看| 久久国产欧美日韩精品| 国产精品一二三区在线| 国产麻豆91精品| www.日韩av| 色噜噜狠狠色综合欧洲selulu| 91麻豆免费看片| 狠狠v欧美v日韩v亚洲ⅴ| 久久99精品久久久| 国产91富婆露脸刺激对白| 成人国产亚洲欧美成人综合网| 99re热这里只有精品视频| 在线视频一区二区三区| 欧美一区午夜视频在线观看| 日韩女优制服丝袜电影| 欧美激情在线看| 一区二区三区四区激情| 丝袜国产日韩另类美女| 精品一区二区三区影院在线午夜| 国产一区二区中文字幕| 91农村精品一区二区在线| 欧美日本韩国一区| 久久久91精品国产一区二区三区| 国产精品久久毛片| 视频一区二区三区在线| 国产馆精品极品| 欧美视频一二三区| 国产丝袜美腿一区二区三区| 亚洲午夜影视影院在线观看| 精品系列免费在线观看| 91理论电影在线观看| 日韩欧美国产不卡| 亚洲欧美一区二区不卡| 蜜臀av性久久久久蜜臀aⅴ四虎 | 国产亚洲制服色| 一二三四社区欧美黄| 国产精品一区二区三区乱码| 91精品国产综合久久精品麻豆| 久久久精品国产免大香伊| 亚洲一区自拍偷拍| 国产成人免费视频网站高清观看视频 | 中文字幕精品在线不卡| 三级欧美韩日大片在线看| 丁香亚洲综合激情啪啪综合| 6080国产精品一区二区| 中文字幕亚洲综合久久菠萝蜜| 免费看黄色91| 欧美日韩大陆一区二区|