?? fdtd3d_upml.m
字號(hào):
%***********************************************************************
% 3-D FDTD code with UPML absorbing boundary conditions
%***********************************************************************
%
% Program author: Keely J. Willis, Graduate Student
% UW Computational Electromagnetics Laboratory
% Director: Susan C. Hagness
% Department of Electrical and Computer Engineering
% University of Wisconsin-Madison
% 1415 Engineering Drive
% Madison, WI 53706-1691
% kjwillis@wisc.edu
%
% This MATLAB M-file implements the finite-difference time-domain
% solution of Maxwell's curl equations over a three-dimensional
% Cartesian space lattice comprised of uniform cubic grid cells.
%
% The dimensions of the computational domain are 8.2 cm
% (x-direction), 3.4 cm (y-direction), and 3.2 cm (z-direction).
% The grid is terminated with UPML absorbing boundary conditions.
%
% An electric current source comprised of two collinear Jz components
% (realizing a Hertzian dipole) excites a radially propagating wave.
% The current source is located in the center of the grid. The
% source waveform is a differentiated Gaussian pulse given by
% J(t)=J0*(t-t0)*exp(-(t-t0)^2/tau^2),
% where tau=50 ps. The FWHM spectral bandwidth of this zero-dc-
% content pulse is approximately 7 GHz. The grid resolution
% (dx = 2 mm) was chosen to provide at least 10 samples per
% wavelength up through 15 GHz.
%
%
%***********************************************************************
clear
%***********************************************************************
% Fundamental constants
%***********************************************************************
cc=2.99792458e8;
muz=4.0*pi*1.0e-7;
epsz=1.0/(cc*cc*muz);
etaz=sqrt(muz/epsz);
%***********************************************************************
% Material parameters
%***********************************************************************
mur=1.0;
epsr=1.0;
eta=etaz*sqrt(mur/epsr);
%***********************************************************************
% Grid parameters
%
% Each grid size variable name describes the number of sampled points
% for a particular field component in the direction of that component.
% Additionally, the variable names indicate the region of the grid
% for which the dimension is relevant. For example, ie_tot is the
% number of sample points of Ex along the x-axis in the total
% computational grid, and jh_bc is the number of sample points of Hy
% along the y-axis in the y-normal UPML regions.
%
%***********************************************************************
ie=41; % Size of main grid
je=17;
ke=16;
ih=ie+1;
jh=je+1;
kh=ke+1;
upml=10; % Thickness of PML boundaries
ih_bc=upml+1;
jh_bc=upml+1;
kh_bc=upml+1;
ie_tot=ie+2*upml; % Size of total computational domain
je_tot=je+2*upml;
ke_tot=ke+2*upml;
ih_tot=ie_tot+1;
jh_tot=je_tot+1;
kh_tot=ke_tot+1;
is=round(ih_tot/2); % Location of z-directed current source
js=round(jh_tot/2);
ks=round(ke_tot/2);
%***********************************************************************
% Fundamental grid parameters
%***********************************************************************
delta=0.002;
dt=delta*sqrt(epsr*mur)/(2.0*cc);
nmax=100;
%***********************************************************************
% Differentiated Gaussian pulse excitation
%***********************************************************************
rtau=50.0e-12;
tau=rtau/dt;
ndelay=3*tau;
J0=-1.0*epsz;
%***********************************************************************
% Initialize field arrays
%***********************************************************************
ex=zeros(ie_tot,jh_tot,kh_tot);
ey=zeros(ih_tot,je_tot,kh_tot);
ez=zeros(ih_tot,jh_tot,ke_tot);
dx=zeros(ie_tot,jh_tot,kh_tot);
dy=zeros(ih_tot,je_tot,kh_tot);
dz=zeros(ih_tot,jh_tot,ke_tot);
hx=zeros(ih_tot,je_tot,ke_tot);
hy=zeros(ie_tot,jh_tot,ke_tot);
hz=zeros(ie_tot,je_tot,kh_tot);
bx=zeros(ih_tot,je_tot,ke_tot);
by=zeros(ie_tot,jh_tot,ke_tot);
bz=zeros(ie_tot,je_tot,kh_tot);
%***********************************************************************
% Initialize update coefficient arrays
%***********************************************************************
C1ex=zeros(size(ex));
C2ex=zeros(size(ex));
C3ex=zeros(size(ex));
C4ex=zeros(size(ex));
C5ex=zeros(size(ex));
C6ex=zeros(size(ex));
C1ey=zeros(size(ey));
C2ey=zeros(size(ey));
C3ey=zeros(size(ey));
C4ey=zeros(size(ey));
C5ey=zeros(size(ey));
C6ey=zeros(size(ey));
C1ez=zeros(size(ez));
C2ez=zeros(size(ez));
C3ez=zeros(size(ez));
C4ez=zeros(size(ez));
C5ez=zeros(size(ez));
C6ez=zeros(size(ez));
D1hx=zeros(size(hx));
D2hx=zeros(size(hx));
D3hx=zeros(size(hx));
D4hx=zeros(size(hx));
D5hx=zeros(size(hx));
D6hx=zeros(size(hx));
D1hy=zeros(size(hy));
D2hy=zeros(size(hy));
D3hy=zeros(size(hy));
D4hy=zeros(size(hy));
D5hy=zeros(size(hy));
D6hy=zeros(size(hy));
D1hz=zeros(size(hz));
D2hz=zeros(size(hz));
D3hz=zeros(size(hz));
D4hz=zeros(size(hz));
D5hz=zeros(size(hz));
D6hz=zeros(size(hz));
%***********************************************************************
% Update coefficients, as described in Section 7.8.2.
%
% In order to simplify the update equations used in the time-stepping
% loop, we implement UPML update equations throughout the entire
% grid. In the main grid, the electric-field update coefficients of
% Equations 7.91a-f and the correponding magnetic field update
% coefficients extracted from Equations 7.89 and 7.90 are simplified
% for the main grid (free space) and calculated below.
%
%***********************************************************************
C1=1.0;
C2=dt;
C3=1.0;
C4=1.0/2.0/epsr/epsr/epsz/epsz;
C5=2.0*epsr*epsz;
C6=2.0*epsr*epsz;
D1=1.0;
D2=dt;
D3=1.0;
D4=1.0/2.0/epsr/epsz/mur/muz;
D5=2.0*epsr*epsz;
D6=2.0*epsr*epsz;
%***********************************************************************
% Initialize main grid update coefficients
%***********************************************************************
C1ex(:,jh_bc:jh_tot-upml,:)=C1;
C2ex(:,jh_bc:jh_tot-upml,:)=C2;
C3ex(:,:,kh_bc:kh_tot-upml)=C3;
C4ex(:,:,kh_bc:kh_tot-upml)=C4;
C5ex(ih_bc:ie_tot-upml,:,:)=C5;
C6ex(ih_bc:ie_tot-upml,:,:)=C6;
C1ey(:,:,kh_bc:kh_tot-upml)=C1;
C2ey(:,:,kh_bc:kh_tot-upml)=C2;
C3ey(ih_bc:ih_tot-upml,:,:)=C3;
C4ey(ih_bc:ih_tot-upml,:,:)=C4;
C5ey(:,jh_bc:je_tot-upml,:)=C5;
C6ey(:,jh_bc:je_tot-upml,:)=C6;
C1ez(ih_bc:ih_tot-upml,:,:)=C1;
C2ez(ih_bc:ih_tot-upml,:,:)=C2;
C3ez(:,jh_bc:jh_tot-upml,:)=C3;
C4ez(:,jh_bc:jh_tot-upml,:)=C4;
C5ez(:,:,kh_bc:ke_tot-upml)=C5;
C6ez(:,:,kh_bc:ke_tot-upml)=C6;
D1hx(:,jh_bc:je_tot-upml,:)=D1;
D2hx(:,jh_bc:je_tot-upml,:)=D2;
D3hx(:,:,kh_bc:ke_tot-upml)=D3;
D4hx(:,:,kh_bc:ke_tot-upml)=D4;
D5hx(ih_bc:ih_tot-upml,:,:)=D5;
D6hx(ih_bc:ih_tot-upml,:,:)=D6;
D1hy(:,:,kh_bc:ke_tot-upml)=D1;
D2hy(:,:,kh_bc:ke_tot-upml)=D2;
D3hy(ih_bc:ie_tot-upml,:,:)=D3;
D4hy(ih_bc:ie_tot-upml,:,:)=D4;
D5hy(:,jh_bc:jh_tot-upml,:)=D5;
D6hy(:,jh_bc:jh_tot-upml,:)=D6;
D1hz(ih_bc:ie_tot-upml,:,:)=D1;
D2hz(ih_bc:ie_tot-upml,:,:)=D2;
D3hz(:,jh_bc:je_tot-upml,:)=D3;
D4hz(:,jh_bc:je_tot-upml,:)=D4;
D5hz(:,:,kh_bc:kh_tot-upml)=D5;
D6hz(:,:,kh_bc:kh_tot-upml)=D6;
%***********************************************************************
% Fill in PML regions
%
% PML theory describes a continuous grading of the material properties
% over the PML region. In the FDTD grid it is necessary to discretize
% the grading by averaging the material properties over a grid cell
% width centered on each field component. As an example of the
% implementation of this averaging, we take the integral of the
% continuous sigma(x) in the PML region
%
% sigma_i = integral(sigma(x))/delta
%
% where the integral is over a single grid cell width in x, and is
% bounded by x1 and x2. Applying this to the polynomial grading of
% Equation 7.60a produces
%
% sigma_i = (x2^(m+1)-x1^(m+1))*sigmam/(delta*(m+1)*d^m)
%
% where sigmam is the maximum value of sigma as described by Equation
% 7.62.
%
% The definitions of x1 and x2 depend on the position of the field
% component within the grid cell. We have either
%
% x1 = (i-0.5)*delta, x2 = (i+0.5)*delta
%
% or
%
% x1 = (i)*delta, x2 = (i+1)*delta
%
% where i varies over the PML region.
%
%***********************************************************************
rmax=exp(-16); %desired reflection error, designated as R(0) in Equation 7.62
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -