?? init.c
字號:
/* GNU Objective C Runtime initialization Copyright (C) 1993, 1995, 1996, 1997 Free Software Foundation, Inc. Contributed by Kresten Krab Thorup +load support contributed by Ovidiu Predescu <ovidiu@net-community.com>This file is part of GNU CC.GNU CC is free software; you can redistribute it and/or modify it under theterms of the GNU General Public License as published by the Free SoftwareFoundation; either version 2, or (at your option) any later version.GNU CC is distributed in the hope that it will be useful, but WITHOUT ANYWARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESSFOR A PARTICULAR PURPOSE. See the GNU General Public License for moredetails.You should have received a copy of the GNU General Public License along withGNU CC; see the file COPYING. If not, write to the Free SoftwareFoundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *//* As a special exception, if you link this library with files compiled with GCC to produce an executable, this does not cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */#include "runtime.h"/* The version number of this runtime. This must match the number defined in gcc (objc-act.c) */#define OBJC_VERSION 8#define PROTOCOL_VERSION 2/* This list contains all modules currently loaded into the runtime */static struct objc_list* __objc_module_list = 0; /* !T:MUTEX *//* This list contains all proto_list's not yet assigned class links */static struct objc_list* unclaimed_proto_list = 0; /* !T:MUTEX *//* List of unresolved static instances. */static struct objc_list *uninitialized_statics = 0; /* !T:MUTEX *//* Global runtime "write" mutex. */objc_mutex_t __objc_runtime_mutex = 0;/* Number of threads that are alive. */int __objc_runtime_threads_alive = 1; /* !T:MUTEX *//* Check compiler vs runtime version */static void init_check_module_version (Module_t);/* Assign isa links to protos */static void __objc_init_protocols (struct objc_protocol_list* protos);/* Add protocol to class */static void __objc_class_add_protocols (Class, struct objc_protocol_list*);/* This is a hook which is called by __objc_exec_class every time a class or a category is loaded into the runtime. This may e.g. help a dynamic loader determine the classes that have been loaded when an object file is dynamically linked in */void (*_objc_load_callback)(Class class, Category* category); /* !T:SAFE *//* Is all categories/classes resolved? */BOOL __objc_dangling_categories = NO; /* !T:UNUSED */extern SEL__sel_register_typed_name (const char *name, const char *types, struct objc_selector *orig, BOOL is_const);/* Sends +load to all classes and categories in certain situations. */static void objc_send_load (void);/* Inserts all the classes defined in module in a tree of classes that resembles the class hierarchy. This tree is traversed in preorder and the classes in its nodes receive the +load message if these methods were not executed before. The algorithm ensures that when the +load method of a class is executed all the superclasses have been already received the +load message. */static void __objc_create_classes_tree (Module_t module);static void __objc_call_callback (Module_t module);/* A special version that works only before the classes are completely installed in the runtime. */static BOOL class_is_subclass_of_class (Class class, Class superclass);typedef struct objc_class_tree { Class class; struct objc_list *subclasses; /* `head' is pointer to an objc_class_tree */} objc_class_tree;/* This is a linked list of objc_class_tree trees. The head of these trees are root classes (their super class is Nil). These different trees represent different class hierarchies. */static struct objc_list *__objc_class_tree_list = NULL;/* Keeps the +load methods who have been already executed. This hash should not be destroyed during the execution of the program. */static cache_ptr __objc_load_methods = NULL;/* Creates a tree of classes whose topmost class is directly inherited from `upper' and the bottom class in this tree is `bottom_class'. The classes in this tree are super classes of `bottom_class'. `subclasses' member of each tree node point to the next subclass tree node. */static objc_class_tree *create_tree_of_subclasses_inherited_from (Class bottom_class, Class upper){ Class superclass = bottom_class->super_class ? objc_lookup_class ((char*)bottom_class->super_class) : Nil; objc_class_tree *tree, *prev; DEBUG_PRINTF ("create_tree_of_subclasses_inherited_from:"); DEBUG_PRINTF ("bottom_class = %s, upper = %s\n", (bottom_class ? bottom_class->name : NULL), (upper ? upper->name : NULL)); tree = prev = objc_calloc (1, sizeof (objc_class_tree)); prev->class = bottom_class; while (superclass != upper) { tree = objc_calloc (1, sizeof (objc_class_tree)); tree->class = superclass; tree->subclasses = list_cons (prev, tree->subclasses); superclass = (superclass->super_class ? objc_lookup_class ((char*)superclass->super_class) : Nil); prev = tree; } return tree;}/* Insert the `class' into the proper place in the `tree' class hierarchy. This function returns a new tree if the class has been successfully inserted into the tree or NULL if the class is not part of the classes hierarchy described by `tree'. This function is private to objc_tree_insert_class(), you should not call it directly. */static objc_class_tree *__objc_tree_insert_class (objc_class_tree *tree, Class class){ DEBUG_PRINTF ("__objc_tree_insert_class: tree = %x, class = %s\n", tree, class->name); if (tree == NULL) return create_tree_of_subclasses_inherited_from (class, NULL); else if (class == tree->class) { /* `class' has been already inserted */ DEBUG_PRINTF ("1. class %s was previously inserted\n", class->name); return tree; } else if ((class->super_class ? objc_lookup_class ((char*)class->super_class) : Nil) == tree->class) { /* If class is a direct subclass of tree->class then add class to the list of subclasses. First check to see if it wasn't already inserted. */ struct objc_list *list = tree->subclasses; objc_class_tree *node; while (list) { /* Class has been already inserted; do nothing just return the tree. */ if (((objc_class_tree*)list->head)->class == class) { DEBUG_PRINTF ("2. class %s was previously inserted\n", class->name); return tree; } list = list->tail; } /* Create a new node class and insert it into the list of subclasses */ node = objc_calloc (1, sizeof (objc_class_tree)); node->class = class; tree->subclasses = list_cons (node, tree->subclasses); DEBUG_PRINTF ("3. class %s inserted\n", class->name); return tree; } else { /* The class is not a direct subclass of tree->class. Search for class's superclasses in the list of subclasses. */ struct objc_list *subclasses = tree->subclasses; /* Precondition: the class must be a subclass of tree->class; otherwise return NULL to indicate our caller that it must take the next tree. */ if (!class_is_subclass_of_class (class, tree->class)) return NULL; for (; subclasses != NULL; subclasses = subclasses->tail) { Class aClass = ((objc_class_tree*)(subclasses->head))->class; if (class_is_subclass_of_class (class, aClass)) { /* If we found one of class's superclasses we insert the class into its subtree and return the original tree since nothing has been changed. */ subclasses->head = __objc_tree_insert_class (subclasses->head, class); DEBUG_PRINTF ("4. class %s inserted\n", class->name); return tree; } } /* We haven't found a subclass of `class' in the `subclasses' list. Create a new tree of classes whose topmost class is a direct subclass of tree->class. */ { objc_class_tree *new_tree = create_tree_of_subclasses_inherited_from (class, tree->class); tree->subclasses = list_cons (new_tree, tree->subclasses); DEBUG_PRINTF ("5. class %s inserted\n", class->name); return tree; } }}/* This function inserts `class' in the right tree hierarchy classes. */static voidobjc_tree_insert_class (Class class){ struct objc_list *list_node; objc_class_tree *tree; list_node = __objc_class_tree_list; while (list_node) { tree = __objc_tree_insert_class (list_node->head, class); if (tree) { list_node->head = tree; break; } else list_node = list_node->tail; } /* If the list was finished but the class hasn't been inserted, insert it here. */ if (!list_node) { __objc_class_tree_list = list_cons (NULL, __objc_class_tree_list); __objc_class_tree_list->head = __objc_tree_insert_class (NULL, class); }}/* Traverse tree in preorder. Used to send +load. */static voidobjc_preorder_traverse (objc_class_tree *tree, int level, void (*function)(objc_class_tree*, int)){ struct objc_list *node; (*function) (tree, level); for (node = tree->subclasses; node; node = node->tail) objc_preorder_traverse (node->head, level + 1, function);}/* Traverse tree in postorder. Used to destroy a tree. */static voidobjc_postorder_traverse (objc_class_tree *tree, int level, void (*function)(objc_class_tree*, int)){ struct objc_list *node; for (node = tree->subclasses; node; node = node->tail) objc_postorder_traverse (node->head, level + 1, function); (*function) (tree, level);}/* Used to print a tree class hierarchy. */static void__objc_tree_print (objc_class_tree *tree, int level){ int i; for (i = 0; i < level; i++) printf (" "); printf ("%s\n", tree->class->name);}/* Walks on a linked list of methods in the reverse order and executes all the methods corresponding to `op' selector. Walking in the reverse order assures the +load of class is executed first and then +load of categories because of the way in which categories are added to the class methods. */static void__objc_send_message_in_list (MethodList_t method_list, Class class, SEL op){ int i; if (!method_list) return; /* First execute the `op' message in the following method lists */ __objc_send_message_in_list (method_list->method_next, class, op); /* Search the method list. */ for (i = 0; i < method_list->method_count; i++) { Method_t mth = &method_list->method_list[i]; if (mth->method_name && sel_eq (mth->method_name, op) && !hash_is_key_in_hash (__objc_load_methods, mth->method_name)) { /* The method was found and wasn't previously executed. */ (*mth->method_imp) ((id)class, mth->method_name); /* Add this method into the +load hash table */ hash_add (&__objc_load_methods, mth->method_imp, mth->method_imp); DEBUG_PRINTF ("sending +load in class: %s\n", class->name); break; } }}static void__objc_send_load (objc_class_tree *tree, int level){ static SEL load_sel = 0; Class class = tree->class; MethodList_t method_list = class->class_pointer->methods; if (!load_sel) load_sel = sel_register_name ("load"); __objc_send_message_in_list (method_list, class, load_sel);}static void__objc_destroy_class_tree_node (objc_class_tree *tree, int level){ objc_free (tree);}/* This is used to check if the relationship between two classes before the runtime completely installs the classes. */static BOOLclass_is_subclass_of_class (Class class, Class superclass){ for (; class != Nil;) { if (class == superclass) return YES; class = (class->super_class ? objc_lookup_class ((char*)class->super_class) : Nil); } return NO;}/* This list contains all the classes in the runtime system for whom their superclasses are not yet know to the runtime. */static struct objc_list* unresolved_classes = 0;/* Static function used to reference the Object and NXConstantString classes. */static void__objc_force_linking (void){ extern void __objc_linking (void); __objc_linking (); /* Call the function to avoid compiler warning */ __objc_force_linking ();}/* Run through the statics list, removing modules as soon as all its statics have been initialized. */static voidobjc_init_statics (void){ struct objc_list **cell = &uninitialized_statics; struct objc_static_instances **statics_in_module; objc_mutex_lock(__objc_runtime_mutex); while (*cell) { int module_initialized = 1; for (statics_in_module = (*cell)->head; *statics_in_module; statics_in_module++) { struct objc_static_instances *statics = *statics_in_module; Class class = objc_lookup_class (statics->class_name); if (!class) module_initialized = 0; /* Actually, the static's class_pointer will be NULL when we haven't been here before. However, the comparison is to be reminded of taking into account class posing and to think about possible semantics... */ else if (class != statics->instances[0]->class_pointer) { id *inst; for (inst = &statics->instances[0]; *inst; inst++) { (*inst)->class_pointer = class; /* ??? Make sure the object will not be freed. With refcounting, invoke `-retain'. Without refcounting, do nothing and hope that `-free' will never be invoked. */
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -