?? go_calib_optim_iter_weak.m
字號:
%-------------------- Main Optimization:
fprintf(1,'\nMain calibration optimization procedure - Number of images: %d\n',length(ind_active));
param = init_param;
change = 1;
iter = 0;
fprintf(1,'Gradient descent iterations: ');
param_list = param;
% Compute the average distance of all the points to the camera:
Zave_list = zeros(1,length(ind_active));
for ii = 1:length(ind_active),
kk = ind_active(ii);
eval(['X_kk = X_' num2str(kk) ';']);
omckk = param(15+6*(kk-1) + 1:15+6*(kk-1) + 3);
Tckk = param(15+6*(kk-1) + 4:15+6*(kk-1) + 6);
Y_kk = rigid_motion(X_kk,omckk,Tckk);
Zave_list(ii) = mean(Y_kk(3,:));
end;
Zave = sum(N_points_views .* Zave_list) / sum(N_points_views);
fprintf(1,'Weak Perspective Camera Calibration - Setting the average depth of the scene at Zave = %.6f\n',Zave);
while (change > 1e-9)&(iter < MaxIter),
fprintf(1,'%d...',iter+1);
f = param(1:2);
c = param(3:4);
alpha = param(5);
k = param(6:10);
%%% Make sure that all the Z translations satisfy the average depth constraint:
% Compute the average distance of all the points to the camera:
Zave_list = zeros(1,length(ind_active));
for ii = 1:length(ind_active),
kk = ind_active(ii);
eval(['X_kk = X_' num2str(kk) ';']);
omckk = param(15+6*(kk-1) + 1:15+6*(kk-1) + 3);
Tckk = param(15+6*(kk-1) + 4:15+6*(kk-1) + 6);
Y_kk = rigid_motion(X_kk,omckk,Tckk);
Zave_list(ii) = mean(Y_kk(3,:));
end;
Zave2 = sum(N_points_views .* Zave_list) / sum(N_points_views);
change_T = Zave2 - Zave;
for ii = 1:length(ind_active),
kk = ind_active(ii);
Tckk = param(15+6*(kk-1) + 4:15+6*(kk-1) + 6);
%Tckk2 = Tckk .* [1;1;ratio_T];
Tckk2 = Tckk - [0;0;change_T];
param(15+6*(kk-1) + 4:15+6*(kk-1) + 6) = Tckk2;
end;
% To speed up: pre-allocate the memory for the Jacobian JJ3.
% For that, need to compute the total number of points.
%% The first step consists of updating the whole vector of knowns (intrinsic + extrinsic of active
%% images) through a one step steepest gradient descent.
% Compute the size of the Jacobian matrix:
N_points_views_active = N_points_views(ind_active);
JJ3 = sparse([],[],[],15 + 6*n_ima,15 + 6*n_ima,126*n_ima + 225);
ex3 = zeros(15 + 6*n_ima,1);
for kk = ind_active, %1:n_ima,
omckk = param(15+6*(kk-1) + 1:15+6*(kk-1) + 3);
Tckk = param(15+6*(kk-1) + 4:15+6*(kk-1) + 6);
if isnan(omckk(1)),
fprintf(1,'Intrinsic parameters at frame %d do not exist\n',kk);
return;
end;
eval(['X_kk = X_' num2str(kk) ';']);
eval(['x_kk = x_' num2str(kk) ';']);
Np = N_points_views(kk);
if ~est_aspect_ratio,
[x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points_weak(X_kk,omckk,Tckk,f(1),c,k,alpha,Zave);
dxdf = repmat(dxdf,[1 2]);
else
[x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points_weak(X_kk,omckk,Tckk,f,c,k,alpha,Zave);
end;
exkk = x_kk - x;
A = [dxdf dxdc dxdalpha dxdk]';
B = [dxdom dxdT]';
JJ3(1:10,1:10) = JJ3(1:10,1:10) + sparse(A*A');
JJ3(15+6*(kk-1) + 1:15+6*(kk-1) + 6,15+6*(kk-1) + 1:15+6*(kk-1) + 6) = sparse(B*B');
AB = sparse(A*B');
JJ3(1:10,15+6*(kk-1) + 1:15+6*(kk-1) + 6) = AB;
JJ3(15+6*(kk-1) + 1:15+6*(kk-1) + 6,1:10) = (AB)';
ex3(1:10) = ex3(1:10) + A*exkk(:);
ex3(15+6*(kk-1) + 1:15+6*(kk-1) + 6) = B*exkk(:);
% Check if this view is ill-conditioned:
if 0, %check_cond,
JJ_kk = B'; %[dxdom dxdT];
if (cond(JJ_kk)> thresh_cond),
active_images(kk) = 0;
fprintf(1,'\nWarning: View #%d ill-conditioned. This image is now set inactive. (note: to disactivate this option, set check_cond=0)\n',kk)
desactivated_images = [desactivated_images kk];
param(15+6*(kk-1) + 1:15+6*(kk-1) + 6) = NaN*ones(6,1);
end;
end;
end;
% List of active images (necessary if changed):
check_active_images;
% The following vector helps to select the variables to update (for only active images):
selected_variables = [est_fc;center_optim*ones(2,1);est_alpha;est_dist;zeros(5,1);reshape(ones(6,1)*active_images,6*n_ima,1)];
if ~est_aspect_ratio,
if isequal(est_fc,[1;1]) | isequal(est_fc,[1;0]),
selected_variables(2) = 0;
end;
end;
ind_Jac = find(selected_variables)';
JJ4 = JJ3(ind_Jac,ind_Jac);
ex4 = ex3(ind_Jac);
% Try to make the inversion work:
[U,S,V] = svd(full(JJ4));
if 0,
s = diag(S);
figure(100);
semilogy(s);
end;
n_reject = length(ind_active);
U = U(:,1:end-n_reject);
S = S(1:end-n_reject,1:end-n_reject);
JJ2_inv = U * inv(S) * U';
%JJ2_inv = inv(JJ4); % not bad for sparse matrices!!
% Smoothing coefficient:
alpha_smooth2 = 1-(1-alpha_smooth)^(iter+1); %set to 1 to undo any smoothing!
param_innov = alpha_smooth2*JJ2_inv*ex4;
param_up = param(ind_Jac) + param_innov;
param(ind_Jac) = param_up;
% New intrinsic parameters:
fc_current = param(1:2);
cc_current = param(3:4);
alpha_current = param(5);
kc_current = param(6:10);
if ~est_aspect_ratio & isequal(est_fc,[1;1]),
fc_current(2) = fc_current(1);
param(2) = param(1);
end;
% Change on the intrinsic parameters:
change = norm([fc_current;cc_current] - [f;c])/norm([fc_current;cc_current]);
param_list = [param_list param];
iter = iter + 1;
end;
fprintf(1,'done\n');
%%%--------------------------- Computation of the error of estimation:
fprintf(1,'Estimation of uncertainties...');
check_active_images;
solution = param;
% Extraction of the paramters for computing the right reprojection error:
fc = solution(1:2);
cc = solution(3:4);
alpha_c = solution(5);
kc = solution(6:10);
for kk = 1:n_ima,
if active_images(kk),
omckk = solution(15+6*(kk-1) + 1:15+6*(kk-1) + 3);%***
Tckk = solution(15+6*(kk-1) + 4:15+6*(kk-1) + 6);%***
Rckk = rodrigues(omckk);
else
omckk = NaN*ones(3,1);
Tckk = NaN*ones(3,1);
Rckk = NaN*ones(3,3);
end;
eval(['omc_' num2str(kk) ' = omckk;']);
eval(['Rc_' num2str(kk) ' = Rckk;']);
eval(['Tc_' num2str(kk) ' = Tckk;']);
end;
% Recompute the error (in the vector ex):
comp_error_calib;
sigma_x = std(ex(:));
% Compute the size of the Jacobian matrix:
N_points_views_active = N_points_views(ind_active);
JJ3 = sparse([],[],[],15 + 6*n_ima,15 + 6*n_ima,126*n_ima + 225);
for kk = ind_active,
omckk = param(15+6*(kk-1) + 1:15+6*(kk-1) + 3);
Tckk = param(15+6*(kk-1) + 4:15+6*(kk-1) + 6);
eval(['X_kk = X_' num2str(kk) ';']);
Np = N_points_views(kk);
%[x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points_weak(X_kk,omckk,Tckk,fc,cc,kc,alpha_c,Zave);
if ~est_aspect_ratio,
[x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points_weak(X_kk,omckk,Tckk,fc(1),cc,kc,alpha_c,Zave);
dxdf = repmat(dxdf,[1 2]);
else
[x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points_weak(X_kk,omckk,Tckk,fc,cc,kc,alpha_c,Zave);
end;
A = [dxdf dxdc dxdalpha dxdk]';
B = [dxdom dxdT]';
JJ3(1:10,1:10) = JJ3(1:10,1:10) + sparse(A*A');
JJ3(15+6*(kk-1) + 1:15+6*(kk-1) + 6,15+6*(kk-1) + 1:15+6*(kk-1) + 6) = sparse(B*B');
AB = sparse(A*B');
JJ3(1:10,15+6*(kk-1) + 1:15+6*(kk-1) + 6) = AB;
JJ3(15+6*(kk-1) + 1:15+6*(kk-1) + 6,1:10) = (AB)';
end;
JJ3 = JJ3(ind_Jac,ind_Jac);
% Try to make the inversion work:
[U,S,V] = svd(full(JJ3));
n_reject = length(ind_active);
U = U(:,1:end-n_reject);
S = S(1:end-n_reject,1:end-n_reject);
JJ2_inv = U * inv(S) * U';
%JJ2_inv = inv(JJ3); % not bad for sparse matrices!!
param_error = zeros(6*n_ima+15,1);
param_error(ind_Jac) = 3*sqrt(full(diag(JJ2_inv)))*sigma_x;
solution_error = param_error;
if ~est_aspect_ratio & isequal(est_fc,[1;1]),
solution_error(2) = solution_error(1);
end;
%%% Extraction of the final intrinsic and extrinsic paramaters:
extract_parameters;
fprintf(1,'done\n');
fprintf(1,'\n\nCalibration results after optimization for weak perspective camera model (with uncertainties):\n\n');
fprintf(1,'Focal Length: fc = [ %3.5f %3.5f ]
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -