亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? svm.cpp

?? svm
?? CPP
?? 第 1 頁 / 共 3 頁
字號:
	info("nSV = %d, nBSV = %d\n",nSV,nBSV);	decision_function f;	f.alpha = alpha;	f.rho = si.rho;	return f;}//// svm_model//struct svm_model{	svm_parameter param;	// parameter	int nr_class;		// number of classes, = 2 in regression/one class svm	int l;			// total #SV	svm_node **SV;		// SVs (SV[l])	double **sv_coef;	// coefficients for SVs in decision functions (sv_coef[n-1][l])	double *rho;		// constants in decision functions (rho[n*(n-1)/2])	// for classification only	int *label;		// label of each class (label[n])	int *nSV;		// number of SVs for each class (nSV[n])				// nSV[0] + nSV[1] + ... + nSV[n-1] = l	// XXX	int free_sv;		// 1 if svm_model is created by svm_load_model				// 0 if svm_model is created by svm_train};//// Interface functions//svm_model *svm_train(const svm_problem *prob, const svm_parameter *param){	svm_model *model = Malloc(svm_model,1);	model->param = *param;	model->free_sv = 0;	// XXX	if(param->svm_type == ONE_CLASS ||	   param->svm_type == EPSILON_SVR ||	   param->svm_type == NU_SVR)	{		// regression or one-class-svm		model->nr_class = 2;		model->label = NULL;		model->nSV = NULL;		model->sv_coef = Malloc(double *,1);		decision_function f = svm_train_one(prob,param,0,0);		model->rho = Malloc(double,1);		model->rho[0] = f.rho;		int nSV = 0;		int i;		for(i=0;i<prob->l;i++)			if(fabs(f.alpha[i]) > 0) ++nSV;		model->l = nSV;		model->SV = Malloc(svm_node *,nSV);		model->sv_coef[0] = Malloc(double,nSV);		int j = 0;		for(i=0;i<prob->l;i++)			if(fabs(f.alpha[i]) > 0)			{				model->SV[j] = prob->x[i];				model->sv_coef[0][j] = f.alpha[i];				++j;			}				free(f.alpha);	}	else	{		// classification		// find out the number of classes		int l = prob->l;		int max_nr_class = 16;		int nr_class = 0;		int *label = Malloc(int,max_nr_class);		int *count = Malloc(int,max_nr_class);		int *index = Malloc(int,l);		int i;		for(i=0;i<l;i++)		{			int this_label = (int)prob->y[i];			int j;			for(j=0;j<nr_class;j++)				if(this_label == label[j])				{					++count[j];					break;				}			index[i] = j;			if(j == nr_class)			{				if(nr_class == max_nr_class)				{					max_nr_class *= 2;					label = (int *)realloc(label,max_nr_class*sizeof(int));					count = (int *)realloc(count,max_nr_class*sizeof(int));				}				label[nr_class] = this_label;				count[nr_class] = 1;				++nr_class;			}		}		// group training data of the same class		int *start = Malloc(int,nr_class);		start[0] = 0;		for(i=1;i<nr_class;i++)			start[i] = start[i-1]+count[i-1];		svm_node **x = Malloc(svm_node *,l);				for(i=0;i<l;i++)		{			x[start[index[i]]] = prob->x[i];			++start[index[i]];		}				start[0] = 0;		for(i=1;i<nr_class;i++)			start[i] = start[i-1]+count[i-1];		// calculate weighted C		double *weighted_C = Malloc(double, nr_class);		for(i=0;i<nr_class;i++)			weighted_C[i] = param->C;		for(i=0;i<param->nr_weight;i++)		{				int j;			for(j=0;j<nr_class;j++)				if(param->weight_label[i] == label[j])					break;			if(j == nr_class)				fprintf(stderr,"warning: class label %d specified in weight is not found\n", param->weight_label[i]);			else				weighted_C[j] *= param->weight[i];		}		// train n*(n-1)/2 models				bool *nonzero = Malloc(bool,l);		for(i=0;i<l;i++)			nonzero[i] = false;		decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2);		int p = 0;		for(i=0;i<nr_class;i++)			for(int j=i+1;j<nr_class;j++)			{				svm_problem sub_prob;				int si = start[i], sj = start[j];				int ci = count[i], cj = count[j];				sub_prob.l = ci+cj;				sub_prob.x = Malloc(svm_node *,sub_prob.l);				sub_prob.y = Malloc(double,sub_prob.l);				int k;				for(k=0;k<ci;k++)				{					sub_prob.x[k] = x[si+k];					sub_prob.y[k] = +1;				}				for(k=0;k<cj;k++)				{					sub_prob.x[ci+k] = x[sj+k];					sub_prob.y[ci+k] = -1;				}								f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]);				for(k=0;k<ci;k++)					if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0)						nonzero[si+k] = true;				for(k=0;k<cj;k++)					if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0)						nonzero[sj+k] = true;				free(sub_prob.x);				free(sub_prob.y);				++p;			}		// build output		model->nr_class = nr_class;				model->label = Malloc(int,nr_class);		for(i=0;i<nr_class;i++)			model->label[i] = label[i];				model->rho = Malloc(double,nr_class*(nr_class-1)/2);		for(i=0;i<nr_class*(nr_class-1)/2;i++)			model->rho[i] = f[i].rho;		int total_sv = 0;		int *nz_count = Malloc(int,nr_class);		model->nSV = Malloc(int,nr_class);		for(i=0;i<nr_class;i++)		{			int nSV = 0;			for(int j=0;j<count[i];j++)				if(nonzero[start[i]+j])				{						++nSV;					++total_sv;				}			model->nSV[i] = nSV;			nz_count[i] = nSV;		}				info("Total nSV = %d\n",total_sv);		model->l = total_sv;		model->SV = Malloc(svm_node *,total_sv);		p = 0;		for(i=0;i<l;i++)			if(nonzero[i]) model->SV[p++] = x[i];		int *nz_start = Malloc(int,nr_class);		nz_start[0] = 0;		for(i=1;i<nr_class;i++)			nz_start[i] = nz_start[i-1]+nz_count[i-1];		model->sv_coef = Malloc(double *,nr_class-1);		for(i=0;i<nr_class-1;i++)			model->sv_coef[i] = Malloc(double,total_sv);		p = 0;		for(i=0;i<nr_class;i++)			for(int j=i+1;j<nr_class;j++)			{				// classifier (i,j): coefficients with				// i are in sv_coef[j-1][nz_start[i]...],				// j are in sv_coef[i][nz_start[j]...]				int si = start[i];				int sj = start[j];				int ci = count[i];				int cj = count[j];								int q = nz_start[i];				int k;				for(k=0;k<ci;k++)					if(nonzero[si+k])						model->sv_coef[j-1][q++] = f[p].alpha[k];				q = nz_start[j];				for(k=0;k<cj;k++)					if(nonzero[sj+k])						model->sv_coef[i][q++] = f[p].alpha[ci+k];				++p;			}				free(label);		free(count);		free(index);		free(start);		free(x);		free(weighted_C);		free(nonzero);		for(i=0;i<nr_class*(nr_class-1)/2;i++)			free(f[i].alpha);		free(f);		free(nz_count);		free(nz_start);	}	return model;}int svm_get_nr_class(const svm_model *model){	return model->nr_class;}void svm_get_labels(const svm_model *model, int* label){	for(int i=0;i<model->nr_class;i++)		label[i] = model->label[i];}void svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values){	if(model->param.svm_type == ONE_CLASS ||	   model->param.svm_type == EPSILON_SVR ||	   model->param.svm_type == NU_SVR)	{		double *sv_coef = model->sv_coef[0];		double sum = 0;		for(int i=0;i<model->l;i++)			sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param);		sum -= model->rho[0];		*dec_values = sum;	}	else	{		int i;		int nr_class = model->nr_class;		int l = model->l;				double *kvalue = Malloc(double,l);		for(i=0;i<l;i++)			kvalue[i] = Kernel::k_function(x,model->SV[i],model->param);		int *start = Malloc(int,nr_class);		start[0] = 0;		for(i=1;i<nr_class;i++)			start[i] = start[i-1]+model->nSV[i-1];		int p=0;		int pos=0;		for(i=0;i<nr_class;i++)			for(int j=i+1;j<nr_class;j++)			{				double sum = 0;				int si = start[i];				int sj = start[j];				int ci = model->nSV[i];				int cj = model->nSV[j];								int k;				double *coef1 = model->sv_coef[j-1];				double *coef2 = model->sv_coef[i];				for(k=0;k<ci;k++)					sum += coef1[si+k] * kvalue[si+k];				for(k=0;k<cj;k++)					sum += coef2[sj+k] * kvalue[sj+k];				sum -= model->rho[p++];				dec_values[pos++] = sum;			}		free(kvalue);		free(start);	}}double svm_predict(const svm_model *model, const svm_node *x){	if(model->param.svm_type == ONE_CLASS ||	   model->param.svm_type == EPSILON_SVR ||	   model->param.svm_type == NU_SVR)	{		double res;		svm_predict_values(model, x, &res);				if(model->param.svm_type == ONE_CLASS)			return (res>0)?1:-1;		else			return res;	}	else	{		int i;		int nr_class = model->nr_class;		double *dec_values = Malloc(double, nr_class*(nr_class-1)/2);		svm_predict_values(model, x, dec_values);		int *vote = Malloc(int,nr_class);		for(i=0;i<nr_class;i++)			vote[i] = 0;		int pos=0;		for(i=0;i<nr_class;i++)			for(int j=i+1;j<nr_class;j++)			{				if(dec_values[pos++] > 0)					++vote[i];				else					++vote[j];			}		int vote_max_idx = 0;		for(i=1;i<nr_class;i++)			if(vote[i] > vote[vote_max_idx])				vote_max_idx = i;		free(vote);		free(dec_values);		return model->label[vote_max_idx];	}}const char *svm_type_table[] ={	"c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL};const char *kernel_type_table[]={	"linear","polynomial","rbf","sigmoid",NULL};int svm_save_model(const char *model_file_name, const svm_model *model){	FILE *fp = fopen(model_file_name,"w");	if(fp==NULL) return -1;	const svm_parameter& param = model->param;	fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]);	fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]);	if(param.kernel_type == POLY)		fprintf(fp,"degree %g\n", param.degree);	if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID)		fprintf(fp,"gamma %g\n", param.gamma);	if(param.kernel_type == POLY || param.kernel_type == SIGMOID)		fprintf(fp,"coef0 %g\n", param.coef0);	int nr_class = model->nr_class;	int l = model->l;	fprintf(fp, "nr_class %d\n", nr_class);	fprintf(fp, "total_sv %d\n",l);		{		fprintf(fp, "rho");		for(int i=0;i<nr_class*(nr_class-1)/2;i++)			fprintf(fp," %g",model->rho[i]);		fprintf(fp, "\n");	}		if(model->label)	{		fprintf(fp, "label");		for(int i=0;i<nr_class;i++)			fprintf(fp," %d",model->label[i]);		fprintf(fp, "\n");	}	if(model->nSV)	{		fprintf(fp, "nr_sv");		for(int i=0;i<nr_class;i++)			fprintf(fp," %d",model->nSV[i]);		fprintf(fp, "\n");	}	fprintf(fp, "SV\n");	const double * const *sv_coef = model->sv_coef;	const svm_node * const *SV = model->SV;	for(int i=0;i<l;i++)	{		for(int j=0;j<nr_class-1;j++)			fprintf(fp, "%.16g ",sv_coef[j][i]);		const svm_node *p = SV[i];		while(p->index != -1)		{			fprintf(fp,"%d:%.8g ",p->index,p->value);			p++;		}		fprintf(fp, "\n");	}	fclose(fp);	return 0;}svm_model *svm_load_model(const char *model_file_name){	FILE *fp = fopen(model_file_name,"rb");	if(fp==NULL) return NULL;		// read parameters	svm_model *model = Malloc(svm_model,1);	svm_parameter& param = model->param;	model->rho = NULL;	model->label = NULL;	model->nSV = NULL;	char cmd[81];	while(1)	{		fscanf(fp,"%80s",cmd);		if(strcmp(cmd,"svm_type")==0)		{			fscanf(fp,"%80s",cmd);			int i;			for(i=0;svm_type_table[i];i++)			{				if(strcmp(svm_type_table[i],cmd)==0)				{					param.svm_type=i;					break;				}			}			if(svm_type_table[i] == NULL)			{				fprintf(stderr,"unknown svm type.\n");				free(model->rho);				free(model->label);				free(model->nSV);				free(model);				return NULL;			}		}		else if(strcmp(cmd,"kernel_type")==0)		{					fscanf(fp,"%80s",cmd);			int i;			for(i=0;kernel_type_table[i];i++)			{				if(strcmp(kernel_type_table[i],cmd)==0)				{					param.kernel_type=i;					break;				}			}			if(kernel_type_table[i] == NULL)			{				fprintf(stderr,"unknown kernel function.\n");				free(model->rho);				free(model->label);				free(model->nSV);				free(model);				return NULL;			}		}		else if(strcmp(cmd,"degree")==0)			fscanf(fp,"%lf",&param.degree);		else if(strcmp(cmd,"gamma")==0)			fscanf(fp,"%lf",&param.gamma);		else if(strcmp(cmd,"coef0")==0)			fscanf(fp,"%lf",&param.coef0);		else if(strcmp(cmd,"nr_class")==0)			fscanf(fp,"%d",&model->nr_class);		else if(strcmp(cmd,"total_sv")==0)			fscanf(fp,"%d",&model->l);		else if(strcmp(cmd,"rho")==0)		{			int n = model->nr_class * (model->nr_class-1)/2;			model->rho = Malloc(double,n);			for(int i=0;i<n;i++)				fscanf(fp,"%lf",&model->rho[i]);		}		else if(strcmp(cmd,"label")==0)		{			int n = model->nr_class;			model->label = Malloc(int,n);			for(int i=0;i<n;i++)				fscanf(fp,"%d",&model->label[i]);		}		else if(strcmp(cmd,"nr_sv")==0)		{			int n = model->nr_class;			model->nSV = Malloc(int,n);			for(int i=0;i<n;i++)				fscanf(fp,"%d",&model->nSV[i]);		}		else if(strcmp(cmd,"SV")==0)		{			while(1)			{				int c = getc(fp);				if(c==EOF || c=='\n') break;				}			break;		}		else		{			fprintf(stderr,"unknown text in model file\n");			free(model->rho);			free(model->label);			free(model->nSV);			free(model);			return NULL;		}	}	// read sv_coef and SV	int elements = 0;	long pos = ftell(fp);	while(1)	{		int c = fgetc(fp);		switch(c)		{			case '\n':				// count the '-1' element			case ':':				++elements;				break;			case EOF:				goto out;			default:				;		}	}out:	fseek(fp,pos,SEEK_SET);	int m = model->nr_class - 1;	int l = model->l;	model->sv_coef = Malloc(double *,m);	int i;	for(i=0;i<m;i++)		model->sv_coef[i] = Malloc(double,l);	model->SV = Malloc(svm_node*,l);	svm_node *x_space = Malloc(svm_node,elements);	int j=0;	for(i=0;i<l;i++)	{		model->SV[i] = &x_space[j];		for(int k=0;k<m;k++)			fscanf(fp,"%lf",&model->sv_coef[k][i]);		while(1)		{			int c;			do {				c = getc(fp);				if(c=='\n') goto out2;			} while(isspace(c));			ungetc(c,fp);			fscanf(fp,"%d:%lf",&(x_space[j].index),&(x_space[j].value));			++j;		}	out2:		x_space[j++].index = -1;	}	fclose(fp);	model->free_sv = 1;	// XXX	return model;}void svm_destroy_model(svm_model* model){	if(model->free_sv)		free((void *)(model->SV[0]));	for(int i=0;i<model->nr_class-1;i++)		free(model->sv_coef[i]);	free(model->SV);	free(model->sv_coef);	free(model->rho);	free(model->label);	free(model->nSV);	free(model);}const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param){	// svm_type	int svm_type = param->svm_type;	if(svm_type != C_SVC &&	   svm_type != NU_SVC &&	   svm_type != ONE_CLASS &&	   svm_type != EPSILON_SVR &&	   svm_type != NU_SVR)		return "unknown svm type";		// kernel_type		int kernel_type = param->kernel_type;	if(kernel_type != LINEAR &&	   kernel_type != POLY &&	   kernel_type != RBF &&	   kernel_type != SIGMOID)		return "unknown kernel type";	// cache_size,eps,C,nu,p,shrinking	if(param->cache_size <= 0)		return "cache_size <= 0";	if(param->eps <= 0)		return "eps <= 0";	if(svm_type == C_SVC ||	   svm_type == EPSILON_SVR ||	   svm_type == NU_SVR)		if(param->C <= 0)			return "C <= 0";	if(svm_type == NU_SVC ||	   svm_type == ONE_CLASS ||	   svm_type == NU_SVR)		if(param->nu < 0 || param->nu > 1)			return "nu < 0 or nu > 1";	if(svm_type == EPSILON_SVR)		if(param->p < 0)			return "p < 0";	if(param->shrinking != 0 &&	   param->shrinking != 1)		return "shrinking != 0 and shrinking != 1";	// check whether nu-svc is feasible		if(svm_type == NU_SVC)	{		int l = prob->l;		int max_nr_class = 16;		int nr_class = 0;		int *label = Malloc(int,max_nr_class);		int *count = Malloc(int,max_nr_class);		int i;		for(i=0;i<l;i++)		{			int this_label = (int)prob->y[i];			int j;			for(j=0;j<nr_class;j++)				if(this_label == label[j])				{					++count[j];					break;				}			if(j == nr_class)			{				if(nr_class == max_nr_class)				{					max_nr_class *= 2;					label = (int *)realloc(label,max_nr_class*sizeof(int));					count = (int *)realloc(count,max_nr_class*sizeof(int));				}				label[nr_class] = this_label;				count[nr_class] = 1;				++nr_class;			}		}			for(i=0;i<nr_class;i++)		{			int n1 = count[i];			for(int j=i+1;j<nr_class;j++)			{				int n2 = count[j];				if(param->nu*(n1+n2)/2 > min(n1,n2))				{					free(label);					free(count);					return "specified nu is infeasible";				}			}		}	}	return NULL;}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
成人免费av网站| 波多野结衣中文字幕一区| 国产午夜亚洲精品不卡| 91豆麻精品91久久久久久| 久草热8精品视频在线观看| 1000部国产精品成人观看| 精品美女被调教视频大全网站| 99精品视频中文字幕| 久久国产精品区| 亚洲一区免费观看| 国产精品色哟哟网站| 日韩欧美亚洲国产精品字幕久久久 | 理论片日本一区| 亚洲女与黑人做爰| 欧美激情一区二区在线| 日韩精品影音先锋| 欧美日韩不卡一区| 99re热这里只有精品视频| 国产一区二区三区在线观看精品| 亚洲大片一区二区三区| 亚洲图片激情小说| 国产精品欧美精品| 久久久.com| 久久久久亚洲综合| 精品国产一区二区三区av性色| 欧美性色黄大片手机版| 色爱区综合激月婷婷| 99久久99久久久精品齐齐| 成人福利视频网站| 成人高清伦理免费影院在线观看| 国产自产v一区二区三区c| 毛片av一区二区| 美腿丝袜亚洲一区| 欧美aa在线视频| 蜜桃视频一区二区| 日本中文字幕一区二区有限公司| 亚洲成人久久影院| 亚洲不卡一区二区三区| 亚洲一区二区三区小说| 亚洲精品第1页| 亚洲精品中文字幕在线观看| 亚洲精品久久久蜜桃| 亚洲乱码国产乱码精品精的特点| 亚洲美女屁股眼交| 亚洲一区二区欧美| 三级不卡在线观看| 免费精品视频最新在线| 老司机精品视频在线| 国内精品伊人久久久久av影院| 激情综合色综合久久| 国产成人在线看| 成人黄色av电影| 91小视频在线| 欧美视频三区在线播放| 欧美一区二区视频在线观看2020| 日韩久久免费av| 国产欧美精品国产国产专区| 国产精品的网站| 亚洲最快最全在线视频| 视频一区中文字幕| 久久精品国产亚洲一区二区三区 | 99久久99久久精品免费看蜜桃| 91丨九色porny丨蝌蚪| 在线一区二区三区做爰视频网站| 欧美在线色视频| 日韩一级在线观看| 欧美xxxxx裸体时装秀| 久久久午夜精品| 一区二区三区精品视频在线| 日韩在线播放一区二区| 国产一区二区三区日韩| 色综合av在线| 日韩一区二区三区视频| 亚洲国产精品v| 一区二区三区 在线观看视频| 日韩电影在线一区| 国产成人免费网站| 91久久精品日日躁夜夜躁欧美| 欧美一区二区视频在线观看| 国产精品免费丝袜| 亚洲国产精品精华液网站| 精品一区二区在线免费观看| 99精品黄色片免费大全| 日韩一级免费一区| 中文字幕一区二区三区在线播放| 日本女优在线视频一区二区| 成人一区二区三区| 欧美乱熟臀69xxxxxx| 国产女同性恋一区二区| 午夜视频在线观看一区二区| 成人激情图片网| 欧美一级免费观看| 亚洲欧美视频一区| 国产成人综合亚洲91猫咪| 欧美日本韩国一区| 亚洲色图清纯唯美| 国产尤物一区二区| 欧美偷拍一区二区| 中文字幕永久在线不卡| 精品亚洲国产成人av制服丝袜| 色婷婷精品久久二区二区蜜臀av | 一区二区三区不卡视频在线观看| 国产在线播放一区三区四| 欧美日韩在线播| 国产精品国模大尺度视频| 久久国产精品72免费观看| 在线视频观看一区| 亚洲国产精品激情在线观看| 麻豆精品国产91久久久久久| 欧美图区在线视频| 日韩一区欧美小说| 国v精品久久久网| 日韩欧美一级片| 午夜私人影院久久久久| 日本电影欧美片| 国产精品久久久久aaaa| 国产精品一区在线观看你懂的| 555夜色666亚洲国产免| 亚洲一区二区av电影| 99re6这里只有精品视频在线观看| 国产三级久久久| 国产精品66部| 久久久久9999亚洲精品| 精品亚洲aⅴ乱码一区二区三区| 欧美日韩大陆一区二区| 亚洲第一激情av| 欧美性三三影院| 一级特黄大欧美久久久| 99久久精品久久久久久清纯| 一区视频在线播放| 成人av网站在线观看| 日本一区二区三区免费乱视频| 国产精品亚洲专一区二区三区 | 国产精品美日韩| 福利一区福利二区| 国产欧美日韩在线看| 国产精品888| 国产欧美日韩一区二区三区在线观看 | 日本一二三不卡| 成人久久视频在线观看| 国产精品国产三级国产aⅴ原创| 风间由美性色一区二区三区| 亚洲国产精品高清| 96av麻豆蜜桃一区二区| 一区二区三区在线视频观看| 91丨九色丨黑人外教| 亚洲国产精品一区二区www在线| 欧洲精品视频在线观看| 亚洲国产成人av网| 欧美一区二区福利在线| 国内精品国产成人国产三级粉色 | 一区二区三区欧美视频| 在线一区二区三区四区| 视频一区二区欧美| 日韩精品中文字幕在线不卡尤物| 黄色日韩三级电影| 国产欧美日韩三区| 色综合久久99| 视频一区二区三区中文字幕| 精品福利在线导航| 成人小视频免费观看| 亚洲综合成人网| 日韩三级av在线播放| 国产一区不卡在线| 亚洲另类中文字| 91精品国产综合久久久蜜臀图片| 九九热在线视频观看这里只有精品| 久久久综合视频| 91浏览器在线视频| 男人的j进女人的j一区| 中文字幕免费不卡在线| 欧美性猛交xxxxxxxx| 久久99国产精品久久99果冻传媒| 国产精品三级电影| 亚洲自拍偷拍麻豆| 精品久久一区二区| 91视视频在线观看入口直接观看www | 欧美激情在线免费观看| 欧美三区在线视频| 国产精品夜夜爽| 午夜精品久久久久影视| 中文字幕国产一区| 欧美日韩一区高清| 成人涩涩免费视频| 日韩黄色免费网站| 亚洲欧洲日韩在线| 亚洲综合视频在线观看| 日韩一级欧美一级| 99re这里只有精品首页| 紧缚奴在线一区二区三区| 亚洲美女屁股眼交3| 久久久久久久性| 在线成人av网站| www.性欧美| 久久精品国产99| 亚洲成人动漫av| 亚洲天堂免费在线观看视频| 久久色.com| 欧美一区二区三区在线| 色综合久久99|