亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? tfdemo2.m

?? 2006年修訂時頻分析工具包,已經過嚴格測試,性能可靠!工具包中包括將近一百個子程序.
?? M
字號:
%TFDEMO2 Non stationary signals

%	O. Lemoine - May 1996. 
%	Copyright (c) CNRS.

clc; zoom on; clf; 
echo on;

% Time and frequency localizations and the Heisenberg-Gabor inequality 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% The time and frequency localizations can be evaluated thanks to 
% the M-files loctime.m and locfreq.m of the Toolbox. The first one
% gives the average time center (tm) and the duration (T) of a signal,
% and the second one the average normalized frequency (num) and the 
% normalized bandwidth (B). For example, for a linear chirp with a 
% Gaussian amplitude modulation, we obtain :

sig=fmlin(256).*amgauss(256); 
subplot(211); plot(real(sig)); axis([1 256 -1 1]); grid;
xlabel('Time'); ylabel('Real part'); title('Signal in time');
dsp=fftshift(abs(fft(sig)).^2);
subplot(212); plot((-128:127)/256,dsp); grid;
xlabel('Normalized frequency'); ylabel('Squared modulus'); 
title('Energy spectrum');
[tm ,T]=loctime(sig) 
[num,B]=locfreq(sig)

% Press any key to continue...
 
pause; clc;

% One interesting property of this product T*B is that it is lower
% bounded : T * B >= 1. This constraint, known as the HEISENBERG-GABOR 
% INEQUALITY, illustrates the fact that a signal can not have 
% simultaneously an arbitrarily small support in time and in frequency.
% If we consider a Gaussian signal,

sig=amgauss(256); 
subplot(211); plot(real(sig)); axis([1 256 0 1]); grid;
xlabel('Time'); ylabel('Real part'); title('Signal in time');
dsp=fftshift(abs(fft(sig)).^2);
subplot(212); plot((-128:127)/256,dsp); grid;
xlabel('Normalized frequency'); ylabel('Squared modulus'); 
title('Energy spectrum');
[tm,T]=loctime(sig); 
[fm,B]=locfreq(sig);
[T,B,T*B]

% we can see that it minimizes the time-bandwidth product, and thus is 
% the most concentrated signal in the time-frequency plane.
%
% Press any key to continue...
 
pause; clc;

% Instantaneous frequency and group delay
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% The instantaneous frequency, defined for any analytic signal xa(t) as 
% the derivative of its phase, if(t) = 1/(2pi) d arg{xa(t)} / dt, can
% be a good solution to describe a signal simultaneously in time and in 
% frequency :

sig=fmlin(256); t=2:255; clf;
ifr=instfreq(sig); plotifl(t,ifr,sig(t)); grid;
axis([1 256 0 0.5]); xlabel('Time'); ylabel('Normalized frequency'); 
title('Instantaneous frequency estimation');
 
% As we can see from this plot, the instantaneous frequency shows with
% success the local frequency behavior as a function of time. 
%
% Press any key to continue...
 
pause;

% In a dual way, the local time behavior as a function of frequency can 
% be described by the GROUP DELAY : 
%	tx(nu) = -1/(2*pi) * d arg{Xa(nu)}/d nu.
% This quantity measures the average time arrival of the frequency nu. 
% For example, with signal sig of the previous example, we obtain :

fnorm=0:.05:.5; gd=sgrpdlay(sig,fnorm); plot(gd,fnorm); grid;
xlabel('Time'); ylabel('Normalized frequency'); 
title('Group delay estimation'); axis([1 256 0 0.5]);
 
% Press any key to continue...
 
pause; clc;

% Be careful of the fact that in general, instantaneous frequency and 
% group delay define two different curves in the time-frequency plane. 
% They are approximatively identical only when the time-bandwidth product 
% TB is large. To illustrate this point, let us consider a simple example.
% We calculate the instantaneous frequency and group delay of two signals, 
% the first one having a large TB product, and the second one a small TB
% product:

t=2:255; 
sig1=amgauss(256,128,90).*fmlin(256,0,0.5);
[tm,T1]=loctime(sig1); [fm,B1]=locfreq(sig1); T1*B1
ifr1=instfreq(sig1,t); f1=linspace(0,0.5-1/256,256);
gd1=sgrpdlay(sig1,f1); subplot(211); plot(t,ifr1,'*',gd1,f1,'-')
axis([1 256 0 0.5]); grid; xlabel('Time'); 
ylabel('Normalized frequency'); 

sig2=amgauss(256,128,30).*fmlin(256,0.2,0.4);
[tm,T2]=loctime(sig2); [fm,B2]=locfreq(sig2); T2*B2
ifr2=instfreq(sig2,t); f2=linspace(0.2,0.4,256);
gd2=sgrpdlay(sig2,f2); subplot(212); plot(t,ifr2,'*',gd2,f2,'-')
axis([1 256 0.2 0.4]); grid; xlabel('Time'); 
ylabel('Normalized frequency'); 
 
% On the first plot, the two curves are almost superimposed (i.e. the
% instantaneous frequency is the inverse transform of the group delay),
% whereas on the second plot, the two curves are clearly different.
%
% Press any key to continue...
 
pause; clc;

% Synthesis of a mono-component non stationary signal
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% One part of the Time-Frequency Toolbox is dedicated to the generation 
% of non stationary signals. In that part, three groups of M-files are 
% available:
%
%	- The first one allows to synthesize different amplitude
% modulations. These M-files begin with the prefix 'am'. 
%	- The second one proposes different frequency modulations.  These
% M-files begin with 'fm'. 
%	- The third one is a set of pre-defined signals. Some of them begin
% with 'ana' because these signals are analytic, other have special names.
% 
% The first two groups of files can be combined to produce a large class of
% non stationary signals, multiplying an amplitude modulation and a 
% frequency modulation. For example, we can multiply a linear frequency 
% modulation by a gaussian amplitude modulation :

fm1=fmlin(256,0,0.5); am1=amgauss(256);
sig1=am1.*fm1; clf; plot(real(sig1)); axis([1 256 -1 1]); 
xlabel('Time'); ylabel('Real part');
 
% By default, the signal is centered on the middle (256/2=128), and its
% spread is T=32. If you want to center it at an other position t0, just
% replace am1 by amgauss(256,t0). 
%
% Press any key to continue...
 
pause; clc; 

% A second example can be to multiply a pure frequency (constant frequency 
% modulation) by a one-sided exponential window starting at t=100 :

fm2=fmconst(256,0.2); am2=amexpo1s(256,100);
sig2=am2.*fm2; plot(real(sig2)); axis([1 256 -1 1]); 
xlabel('Time'); ylabel('Real part');
 
% Press any key to continue...
 
pause; 

% As a third example of mono-component non-stationary signal, we can 
% consider the M-file doppler.m : this function generates a modelization 
% of the signal received by a fixed observer from a moving target emitting 
% a pure frequency.

[fm3,am3]=doppler(256,200,4000/60,10,50);
sig3=am3.*fm3; plot(real(sig3)); axis([1 256 -0.4 0.4]); 
xlabel('Time'); ylabel('Real part');

% This example corresponds to a target (a car for instance) moving 
% straightly at the speed of 50 m/s, and passing at 10 m from the observer
% (the radar!). The rotating frequency of the engine is 4000 revolutions 
% per minute, and the sampling frequency of the radar is 200 Hz.
%
% Press any key to continue...
 
pause; clc; 

%   In order to have a more realistic modelization of physical signals, we
% may need to add some complex noise on these signals. To do so, two M-files
% of the Time-Frequency Toolbox are proposed : noisecg.m generates a complex
% white or colored Gaussian noise, and noisecu.m, a complex white uniform 
% noise. For example, if we add complex colored Gaussian noise on the signal
% sig1 with a signal to noise ratio of -10 dB,

noise=noisecg(256,.8);
sign=sigmerge(sig1,noise,-10); plot(real(sign)); 
Min=min(real(sign)); Max=max(real(sign));
xlabel('Time'); ylabel('Real part'); axis([1 256 Min Max]); 

% the deterministic signal sig1 is now almost imperceptible from the noise.
%
% Press any key to continue...
 
pause; clc; 


% Multi-component non stationary signals 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
% The notion of instantaneous frequency implicitly assumes that, at each
% time instant, there exists only a single frequency component. A dual
% restriction applies to the group delay : the implicit assumption is that
% a given frequency is concentrated around a single time instant. Thus, if
% these assumptions are no longer valid, which is the case for most of the
% multi-component signals, the result obtained using the instantaneous
% frequency or the group delay is meaningless.
%
% For example, let's consider the superposition of two linear frequency 
% modulations :

N=128; x1=fmlin(N,0,0.2); x2=fmlin(N,0.3,0.5);
x=x1+x2;

% At each time instant t, an ideal time-frequency representation should
% represent two different frequencies with the same amplitude. The results
% obtained using the instantaneous frequency and the group delay are of
% course completely different, and therefore irrelevant :

ifr=instfreq(x); subplot(211); plot(ifr);
xlabel('Time'); ylabel('Normalized frequency'); axis([1 N  0 0.5]);
fnorm=0:0.01:0.5; gd=sgrpdlay(x,fnorm); subplot(212); plot(gd,fnorm);
xlabel('Time'); ylabel('Normalized frequency'); axis([1 N  0 0.5]);
 
% So these one-dimensional representations, instantaneous frequency and 
% group delay, are not sufficient to represent all the non stationary 
% signals. A further step has to be made towards two-dimensional mixed 
% representations, jointly in time and in frequency. 
%
% Press any key to continue...
 
pause; clc; 

% To have an idea of what can be made with an time-frequency decomposition,
% let's anticipate the following and have a look at the result obtained 
% with the Short Time Fourier Transform :

tfrstft(x); 

% Here two 'time-frequency components' can be clearly seen, located around
% the locus of the two frequency modulations.
%

echo off

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
一区二区三区中文字幕精品精品 | av在线不卡电影| 亚洲人成伊人成综合网小说| 91精品欧美久久久久久动漫 | 欧美不卡在线视频| 92国产精品观看| 黄色小说综合网站| 亚洲高清不卡在线| 国产精品久久二区二区| 91精品国产综合久久久久久久久久| 国产九九视频一区二区三区| 亚洲成在线观看| 中文成人综合网| 欧美不卡一二三| 666欧美在线视频| 色噜噜狠狠成人网p站| 国产jizzjizz一区二区| 美女免费视频一区二区| 亚洲一区电影777| 国产精品久久久久一区二区三区| 日韩精品一区二区三区视频在线观看 | 五月天一区二区| 中文字幕一区二区三区蜜月| 国产欧美日韩精品a在线观看| 正在播放亚洲一区| 欧美丝袜自拍制服另类| 91日韩一区二区三区| 成人丝袜高跟foot| 黄色资源网久久资源365| 久久成人精品无人区| 丝袜脚交一区二区| 亚洲成a人v欧美综合天堂| 亚洲丝袜美腿综合| 日韩一区有码在线| 亚洲欧美国产77777| 中文字幕不卡三区| 国产蜜臀97一区二区三区| 精品国产麻豆免费人成网站| 日韩亚洲电影在线| 日韩欧美一区二区在线视频| 欧美理论在线播放| 5566中文字幕一区二区电影| 欧美日韩你懂的| 欧美日韩国产精品自在自线| 欧美午夜宅男影院| 欧美三级电影网站| 欧美精品777| 欧美一区二区成人6969| 日韩一级黄色大片| 精品日韩99亚洲| 久久久久久综合| 久久精品在线免费观看| 中文字幕不卡在线观看| 国产精品天美传媒| 亚洲欧美国产高清| 午夜精品久久久| 免费成人你懂的| 国产乱国产乱300精品| 国产成人午夜99999| 99麻豆久久久国产精品免费优播| 色婷婷久久综合| 欧美日韩国产成人在线免费| 精品国产99国产精品| 国产视频在线观看一区二区三区| 国产精品乱码一区二区三区软件 | 国产精品一区免费在线观看| 国产成人午夜精品5599| av亚洲精华国产精华精华| 欧美午夜理伦三级在线观看| 日韩丝袜情趣美女图片| 国产日韩欧美高清| 亚洲一区二区三区美女| 奇米精品一区二区三区在线观看| 国产一区二区福利视频| 91麻豆国产自产在线观看| 欧美日本在线一区| 日本一区二区三区dvd视频在线| 亚洲欧美一区二区三区久本道91| 五月天中文字幕一区二区| 国产一区二区在线观看免费 | 不卡av在线免费观看| 欧美视频一二三区| 久久青草欧美一区二区三区| 亚洲三级电影网站| 奇米亚洲午夜久久精品| 99久久国产综合色|国产精品| 91精品在线免费观看| 日本一区二区三区视频视频| 亚洲成人av中文| 国产成人精品一区二| 欧美日韩一区二区在线观看| 久久久久久久精| 亚洲国产一区二区视频| 国产乱子伦视频一区二区三区 | 欧美卡1卡2卡| 国产亚洲va综合人人澡精品| 亚洲线精品一区二区三区 | 韩国精品主播一区二区在线观看 | 日本三级亚洲精品| 成人精品免费网站| 91精品久久久久久久99蜜桃| 中文字幕在线免费不卡| 蜜桃精品在线观看| 日本韩国欧美在线| 久久久99免费| 丝袜a∨在线一区二区三区不卡| 国产suv一区二区三区88区| 欧美老女人在线| 亚洲欧美另类久久久精品| 国产精品影音先锋| 欧美一区二区三区在线看| 亚洲女同ⅹxx女同tv| 国产高清视频一区| 91精品国产麻豆| 亚洲第一会所有码转帖| 91在线视频观看| 日本一二三四高清不卡| 极品少妇xxxx精品少妇| 88在线观看91蜜桃国自产| 亚洲激情男女视频| aaa欧美日韩| 中文字幕第一页久久| 国产精品自产自拍| 精品国产乱子伦一区| 五月婷婷综合网| 欧美日韩国产成人在线免费| 伊人开心综合网| 91在线视频播放地址| 国产精品无圣光一区二区| 国产在线播精品第三| 久久综合五月天婷婷伊人| 久久国产精品区| 欧美成人精品福利| 捆绑调教一区二区三区| 日韩一级二级三级| 毛片一区二区三区| 日韩午夜在线播放| 秋霞国产午夜精品免费视频| 欧美伦理影视网| 日韩精品国产精品| 91精品国产色综合久久久蜜香臀| 午夜电影久久久| 欧美精品九九99久久| 日韩精品乱码免费| 日韩精品一区二区三区swag| 免费观看30秒视频久久| 欧美一区二区精品久久911| 蜜桃视频免费观看一区| 精品成人a区在线观看| 国产风韵犹存在线视精品| 国产午夜精品福利| www.亚洲在线| 亚洲男女毛片无遮挡| 欧美亚洲综合另类| 日本91福利区| 欧美国产视频在线| 91麻豆精品一区二区三区| 亚洲18色成人| 精品国产污网站| 成人av影院在线| 亚洲自拍偷拍九九九| 欧美成人性战久久| 成人av动漫网站| 亚洲一二三四在线| 精品国免费一区二区三区| 成人开心网精品视频| 亚洲一区二区三区在线| 精品精品国产高清a毛片牛牛| 本田岬高潮一区二区三区| 亚洲18色成人| 国产日韩欧美a| 欧美日韩一区不卡| 精品一区二区av| 亚洲人成小说网站色在线| 日韩一区二区三区视频在线| 国产成人精品三级| 亚洲国产精品久久艾草纯爱| 久久午夜国产精品| 91成人网在线| 国产精品 欧美精品| 亚洲成人av在线电影| 26uuu精品一区二区在线观看| 亚洲国产另类av| 777欧美精品| 国产乱码精品一区二区三区忘忧草| 亚洲乱码中文字幕综合| 制服丝袜av成人在线看| 国产suv一区二区三区88区| 日韩精品免费专区| 国产精品你懂的在线欣赏| 欧美丝袜丝交足nylons图片| 国产在线精品一区二区| 亚洲天堂av老司机| 欧美成人一级视频| 在线国产亚洲欧美| 国产精品影音先锋| 亚洲电影你懂得| 国产精品大尺度| 日韩无一区二区| 色婷婷综合久久久中文一区二区|