亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? ga_denis cormier .txt

?? 這是最簡單的
?? TXT
字號:
這是一個非常簡單的遺傳算法源代碼,是由Denis Cormier (North Carolina State University)開發的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代碼保證盡可能少,實際上也不必查錯。對一特定的應用修正此代碼,用戶只需改變常數的定義并且定義“評價函數”即可。注意代碼 的設計是求最大值,其中的目標函數只能取正值;且函數值和個體的適應值之間沒有區別。該系統使用比率選擇、精華模型、單點雜交和均勻變異。如果用 Gaussian變異替換均勻變異,可能得到更好的效果。代碼沒有任何圖形,甚至也沒有屏幕輸出,主要是保證在平臺之間的高可移植性。讀者可以從ftp.uncc.edu, 目錄 coe/evol中的文件prog.c中獲得。要求輸入的文件應該命名為‘gadata.txt’;系統產生的輸出文件為‘galog.txt’。輸入的 文件由幾行組成:數目對應于變量數。且每一行提供次序——對應于變量的上下界。如第一行為第一個變量提供上下界,第二行為第二個變量提供上下界,等等。 

/**************************************************************************/
/* This is a simple genetic algorithm implementation where the */
/* evaluation function takes positive values only and the      */
/* fitness of an individual is the same as the value of the    */
/* objective function                                          */
/**************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* Change any of these parameters to match your needs */

#define POPSIZE 50               /* population size */
#define MAXGENS 1000             /* max. number of generations */
#define NVARS 3                  /* no. of problem variables */
#define PXOVER 0.8               /* probability of crossover */
#define PMUTATION 0.15           /* probability of mutation */
#define TRUE 1
#define FALSE 0

int generation;                  /* current generation no. */
int cur_best;                    /* best individual */
FILE *galog;                     /* an output file */

struct genotype /* genotype (GT), a member of the population */
{
  double gene[NVARS];        /* a string of variables */
  double fitness;            /* GT's fitness */
  double upper[NVARS];       /* GT's variables upper bound */
  double lower[NVARS];       /* GT's variables lower bound */
  double rfitness;           /* relative fitness */
  double cfitness;           /* cumulative fitness */
};

struct genotype population[POPSIZE+1];    /* population */
struct genotype newpopulation[POPSIZE+1]; /* new population; */
                                          /* replaces the */
                                          /* old generation */

/* Declaration of procedures used by this genetic algorithm */

void initialize(void);
double randval(double, double);
void evaluate(void);
void keep_the_best(void);
void elitist(void);
void select(void);
void crossover(void);
void Xover(int,int);
void swap(double *, double *);
void mutate(void);
void report(void);

/***************************************************************/
/* Initialization function: Initializes the values of genes    */
/* within the variables bounds. It also initializes (to zero)  */
/* all fitness values for each member of the population. It    */
/* reads upper and lower bounds of each variable from the      */
/* input file `gadata.txt'. It randomly generates values       */
/* between these bounds for each gene of each genotype in the  */
/* population. The format of the input file `gadata.txt' is    */
/* var1_lower_bound var1_upper bound                           */
/* var2_lower_bound var2_upper bound ...                       */
/***************************************************************/

void initialize(void)
{
FILE *infile;
int i, j;
double lbound, ubound;

if ((infile = fopen("gadata.txt","r"))==NULL)
      {
      fprintf(galog,"\nCannot open input file!\n");
      exit(1);
      }

/* initialize variables within the bounds */

for (i = 0; i < NVARS; i++)
      {
      fscanf(infile, "%lf",&lbound);
      fscanf(infile, "%lf",&ubound);

      for (j = 0; j < POPSIZE; j++)
           {
           population[j].fitness = 0;
           population[j].rfitness = 0;
           population[j].cfitness = 0;
           population[j].lower[i] = lbound;
           population[j].upper[i]= ubound;
           population[j].gene[i] = randval(population[j].lower[i],
                                   population[j].upper[i]);
           }
      }

fclose(infile);
}

/***********************************************************/
/* Random value generator: Generates a value within bounds */
/***********************************************************/

double randval(double low, double high)
{
double val;
val = ((double)(rand()%1000)/1000.0)*(high - low) + low;
return(val);
}

/*************************************************************/
/* Evaluation function: This takes a user defined function.  */
/* Each time this is changed, the code has to be recompiled. */
/* The current function is:  x[1]^2-x[1]*x[2]+x[3]           */
/*************************************************************/

void evaluate(void)
{
int mem;
int i;
double x[NVARS+1];

for (mem = 0; mem < POPSIZE; mem++)
      {
      for (i = 0; i < NVARS; i++)
            x[i+1] = population[mem].gene[i];
      
      population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3];
      }
}

/***************************************************************/
/* Keep_the_best function: This function keeps track of the    */
/* best member of the population. Note that the last entry in  */
/* the array Population holds a copy of the best individual    */
/***************************************************************/

void keep_the_best()
{
int mem;
int i;
cur_best = 0; /* stores the index of the best individual */

for (mem = 0; mem < POPSIZE; mem++)
      {
      if (population[mem].fitness > population[POPSIZE].fitness)
            {
            cur_best = mem;
            population[POPSIZE].fitness = population[mem].fitness;
            }
      }
/* once the best member in the population is found, copy the genes */
for (i = 0; i < NVARS; i++)
      population[POPSIZE].gene[i] = population[cur_best].gene[i];
}

/****************************************************************/
/* Elitist function: The best member of the previous generation */
/* is stored as the last in the array. If the best member of    */
/* the current generation is worse then the best member of the  */
/* previous generation, the latter one would replace the worst  */
/* member of the current population                             */
/****************************************************************/

void elitist()
{
int i;
double best, worst;             /* best and worst fitness values */
int best_mem, worst_mem; /* indexes of the best and worst member */

best = population[0].fitness;
worst = population[0].fitness;
for (i = 0; i < POPSIZE - 1; ++i)
      {
      if(population[i].fitness > population[i+1].fitness)
            {      
            if (population[i].fitness >= best)
                  {
                  best = population[i].fitness;
                  best_mem = i;
                  }
            if (population[i+1].fitness <= worst)
                  {
                  worst = population[i+1].fitness;
                  worst_mem = i + 1;
                  }
            }
      else
            {
            if (population[i].fitness <= worst)
                  {
                  worst = population[i].fitness;
                  worst_mem = i;
                  }
            if (population[i+1].fitness >= best)
                  {
                  best = population[i+1].fitness;
                  best_mem = i + 1;
                  }
            }
      }
/* if best individual from the new population is better than */
/* the best individual from the previous population, then    */
/* copy the best from the new population; else replace the   */
/* worst individual from the current population with the     */
/* best one from the previous generation                     */

if (best >= population[POPSIZE].fitness)
    {
    for (i = 0; i < NVARS; i++)
       population[POPSIZE].gene[i] = population[best_mem].gene[i];
    population[POPSIZE].fitness = population[best_mem].fitness;
    }
else
    {
    for (i = 0; i < NVARS; i++)
       population[worst_mem].gene[i] = population[POPSIZE].gene[i];
    population[worst_mem].fitness = population[POPSIZE].fitness;
    } 
}
/**************************************************************/
/* Selection function: Standard proportional selection for    */
/* maximization problems incorporating elitist model - makes  */
/* sure that the best member survives                         */
/**************************************************************/

void select(void)
{
int mem, i, j, k;
double sum = 0;
double p;

/* find total fitness of the population */
for (mem = 0; mem < POPSIZE; mem++)
      {
      sum += population[mem].fitness;
      }

/* calculate relative fitness */
for (mem = 0; mem < POPSIZE; mem++)
      {
      population[mem].rfitness =  population[mem].fitness/sum;
      }
population[0].cfitness = population[0].rfitness;

/* calculate cumulative fitness */
for (mem = 1; mem < POPSIZE; mem++)
      {
      population[mem].cfitness =  population[mem-1].cfitness +       
                          population[mem].rfitness;
      }

/* finally select survivors using cumulative fitness. */

for (i = 0; i < POPSIZE; i++)
      { 
      p = rand()%1000/1000.0;
      if (p < population[0].cfitness)
            newpopulation[i] = population[0];      
      else
            {
            for (j = 0; j < POPSIZE;j++)      
                  if (p >= population[j].cfitness && 
                              p<population[j+1].cfitness)
                        newpopulation[i] = population[j+1];
            }
      }
/* once a new population is created, copy it back */

for (i = 0; i < POPSIZE; i++)
      population[i] = newpopulation[i];      
}

/***************************************************************/
/* Crossover selection: selects two parents that take part in  */
/* the crossover. Implements a single point crossover          */
/***************************************************************/

void crossover(void)
{
int i, mem, one;
int first  =  0; /* count of the number of members chosen */
double x;

for (mem = 0; mem < POPSIZE; ++mem)
      {
      x = rand()%1000/1000.0;
      if (x < PXOVER)
            {
            ++first;
            if (first % 2 == 0)
                  Xover(one, mem);
            else
                  one = mem;
            }
      }
}
/**************************************************************/
/* Crossover: performs crossover of the two selected parents. */
/**************************************************************/

void Xover(int one, int two)
{
int i;
int point; /* crossover point */

/* select crossover point */
if(NVARS > 1)
   {
   if(NVARS == 2)
         point = 1;
   else
         point = (rand() % (NVARS - 1)) + 1;

   for (i = 0; i < point; i++)
        swap(&population[one].gene[i], &population[two].gene[i]);

   }
}

/*************************************************************/
/* Swap: A swap procedure that helps in swapping 2 variables */
/*************************************************************/

void swap(double *x, double *y)
{
double temp;

temp = *x;
*x = *y;
*y = temp;

}

/**************************************************************/
/* Mutation: Random uniform mutation. A variable selected for */
/* mutation is replaced by a random value between lower and   */
/* upper bounds of this variable                              */
/**************************************************************/

void mutate(void)
{
int i, j;
double lbound, hbound;
double x;

for (i = 0; i < POPSIZE; i++)
      for (j = 0; j < NVARS; j++)
            {
            x = rand()%1000/1000.0;
            if (x < PMUTATION)
                  {
                  /* find the bounds on the variable to be mutated */
                  lbound = population[i].lower[j];
                  hbound = population[i].upper[j];  
                  population[i].gene[j] = randval(lbound, hbound);
                  }
            }
}

/***************************************************************/
/* Report function: Reports progress of the simulation. Data   */
/* dumped into the  output file are separated by commas        */
/***************************************************************/

void report(void)
{
int i;
double best_val;            /* best population fitness */
double avg;                 /* avg population fitness */
double stddev;              /* std. deviation of population fitness */
double sum_square;          /* sum of square for std. calc */
double square_sum;          /* square of sum for std. calc */
double sum;                 /* total population fitness */

sum = 0.0;
sum_square = 0.0;

for (i = 0; i < POPSIZE; i++)
      {
      sum += population[i].fitness;
      sum_square += population[i].fitness * population[i].fitness;
      }

avg = sum/(double)POPSIZE;
square_sum = avg * avg * POPSIZE;
stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1));
best_val = population[POPSIZE].fitness;

fprintf(galog, "\n%5d,      %6.3f, %6.3f, %6.3f \n\n", generation, 
                                      best_val, avg, stddev);
}

/**************************************************************/
/* Main function: Each generation involves selecting the best */
/* members, performing crossover & mutation and then          */
/* evaluating the resulting population, until the terminating */
/* condition is satisfied                                     */
/**************************************************************/

void main(void)
{
int i;

if ((galog = fopen("galog.txt","w"))==NULL)
      {
      exit(1);
      }
generation = 0;

fprintf(galog, "\n generation  best  average  standard \n");
fprintf(galog, " number      value fitness  deviation \n");

initialize();
evaluate();
keep_the_best();
while(generation<MAXGENS)
      {
      generation++;
      select();
      crossover();
      mutate();
      report();
      evaluate();
      elitist();
      }
fprintf(galog,"\n\n Simulation completed\n");
fprintf(galog,"\n Best member: \n");

for (i = 0; i < NVARS; i++)
   {
   fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]);
   }
fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness);
fclose(galog);
printf("Success\n");
}
/***************************************************************/

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲精品免费一二三区| 免费成人在线观看| 香蕉乱码成人久久天堂爱免费| 五月婷婷激情综合网| 久草在线在线精品观看| 不卡视频在线观看| 欧美日韩精品免费观看视频| 欧美mv日韩mv亚洲| 亚洲激情成人在线| 久久99久久99| 91视频一区二区三区| 欧美一级生活片| 中文字幕一区在线观看视频| 日日夜夜精品免费视频| 成人动漫在线一区| 日韩一区二区免费在线观看| 亚洲欧洲无码一区二区三区| 麻豆91精品视频| 色网站国产精品| 久久亚洲捆绑美女| 午夜欧美在线一二页| 成人手机电影网| 日韩欧美卡一卡二| 亚洲欧美另类图片小说| 精品一区二区精品| 欧美三级一区二区| 中文字幕 久热精品 视频在线| 日韩和欧美一区二区三区| 国产亚洲精品免费| 亚洲电影一区二区| 成人精品亚洲人成在线| 宅男噜噜噜66一区二区66| 国产精品久久久久久久第一福利 | 波多野结衣在线一区| 夜夜精品视频一区二区| 日本成人中文字幕在线视频 | 色素色在线综合| 欧美精品一区二区久久久| 亚洲va欧美va人人爽午夜| 色av一区二区| 中文字幕日韩精品一区| 国产一区二区三区日韩| 亚洲精品一区二区三区四区高清| 日韩精品一区第一页| 欧美亚洲动漫制服丝袜| 夜夜精品浪潮av一区二区三区| 91在线免费视频观看| 中文字幕在线不卡| 色婷婷久久久亚洲一区二区三区 | 国产欧美精品一区二区色综合| 欧美电影影音先锋| 日韩一级成人av| 天天做天天摸天天爽国产一区 | 欧美一区二区三区日韩视频| 91在线porny国产在线看| 久久在线观看免费| 欧美日韩视频一区二区| 最新国产精品久久精品| 国v精品久久久网| 精品福利一二区| 日韩av不卡在线观看| 欧美日韩美女一区二区| 亚洲午夜av在线| 日本韩国精品一区二区在线观看| 国产精品成人网| av资源网一区| 亚洲欧美一区二区久久| 色综合久久天天| 亚洲嫩草精品久久| 色天天综合久久久久综合片| 曰韩精品一区二区| 91久久精品一区二区三| 一区二区日韩av| 欧美日精品一区视频| 亚洲电影在线免费观看| 欧美精品精品一区| 免费观看在线色综合| 日韩欧美国产电影| 国内外精品视频| 国产午夜精品美女毛片视频| 国产成人亚洲综合a∨猫咪| 亚洲国产经典视频| 不卡在线观看av| 亚洲免费三区一区二区| 在线视频一区二区三| 亚洲电影一区二区| 日韩欧美中文字幕公布| 黄色日韩网站视频| 欧美国产在线观看| 91麻豆免费看片| 亚洲成人高清在线| 日韩精品一区二区三区视频播放| 国产一区欧美一区| 国产精品理论片| 欧洲一区在线观看| 日本伊人色综合网| 久久中文字幕电影| 91香蕉视频黄| 日韩精品福利网| 久久久不卡网国产精品一区| 不卡的av电影| 日日摸夜夜添夜夜添国产精品 | 国产酒店精品激情| 国产精品全国免费观看高清 | 久久99九九99精品| 亚洲欧洲av另类| 欧美日韩在线观看一区二区| 韩国女主播成人在线观看| 综合激情网...| 91精品欧美综合在线观看最新 | 亚洲精品五月天| 日韩亚洲欧美在线观看| 国产精品卡一卡二卡三| 欧美视频在线播放| 国产精品资源网站| 亚洲一区二区三区三| 精品区一区二区| 色综合久久久网| 久久国产婷婷国产香蕉| 国产精品视频观看| 欧美疯狂性受xxxxx喷水图片| 国产麻豆视频精品| 亚洲激情图片小说视频| 亚洲精品一区二区精华| 在线亚洲+欧美+日本专区| 韩国av一区二区三区在线观看| 亚洲免费av网站| 久久伊人中文字幕| 欧美三级中文字| a亚洲天堂av| 91美女在线看| 94-欧美-setu| 欧美电影影音先锋| 国产精品国产三级国产普通话三级| 亚洲欧美日韩中文播放| 国产精品一区二区三区乱码| 91免费版在线| 日韩欧美亚洲国产精品字幕久久久 | 狠狠色丁香久久婷婷综| 成人午夜激情片| 日韩欧美一区二区久久婷婷| 中文字幕av一区二区三区免费看 | 亚洲美女在线国产| 韩国一区二区三区| 色老头久久综合| 亚洲品质自拍视频| 日本麻豆一区二区三区视频| 国产69精品久久久久777| 91精品国产一区二区三区香蕉| 精品播放一区二区| 欧美一区二区私人影院日本| 国产欧美精品区一区二区三区 | 婷婷中文字幕一区三区| 成人av在线播放网址| 91精品久久久久久久91蜜桃| 日韩成人av影视| 自拍偷拍国产亚洲| 国产午夜精品一区二区三区嫩草| 欧美丝袜自拍制服另类| 成人免费视频网站在线观看| 经典三级在线一区| 青青青爽久久午夜综合久久午夜| 一区二区三区.www| 亚洲黄一区二区三区| 亚洲三级在线观看| 国产精品久久久久三级| 中文字幕不卡三区| 欧美国产精品一区| 国产精品午夜免费| 国产欧美日韩在线| 久久久久久亚洲综合| 久久久久97国产精华液好用吗| 日韩欧美在线123| 欧美一级二级三级乱码| 91精品免费在线观看| 制服丝袜激情欧洲亚洲| 欧美一区二区视频在线观看 | 亚洲午夜成aⅴ人片| 亚洲综合色视频| 亚洲国产视频直播| 亚洲成人av在线电影| 亚洲sss视频在线视频| 亚洲h在线观看| 青青青伊人色综合久久| 久久精品国产免费看久久精品| 麻豆国产精品官网| 麻豆国产精品视频| 国产久卡久卡久卡久卡视频精品| 国产精品夜夜爽| 成人激情动漫在线观看| 一本在线高清不卡dvd| 色悠悠久久综合| 欧美精品在欧美一区二区少妇| 91精品国产91热久久久做人人| 欧美一区二区免费视频| 精品国产百合女同互慰| 久久久久久久久久久久电影| 欧美国产国产综合| 一区二区三区中文在线| 日韩精品久久久久久|