亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? gridfit.m

?? 用Matlab語言實現的三維散列數據擬合
?? M
?? 第 1 頁 / 共 3 頁
字號:
function [zgrid,xgrid,ygrid] = gridfit(x,y,z,xnodes,ynodes,varargin)% gridfit: estimates a surface on a 2d grid, based on scattered data%          Replicates are allowed. All methods extrapolate to the grid%          boundaries. Gridfit uses a modified ridge estimator to%          generate the surface, where the bias is toward smoothness.%%          Gridfit is not an interpolant. Its goal is a smooth surface%          that approximates your data, but allows you to control the%          amount of smoothing.%% usage #1: zgrid = gridfit(x,y,z,xnodes,ynodes);% usage #2: [zgrid,xgrid,ygrid] = gridfit(x,y,z,xnodes,ynodes);% usage #3: zgrid = gridfit(x,y,z,xnodes,ynodes,prop,val,prop,val,...);%% Arguments: (input)%  x,y,z - vectors of equal lengths, containing arbitrary scattered data%          The only constraint on x and y is they cannot ALL fall on a%          single line in the x-y plane. Replicate points will be treated%          in a least squares sense.%%          ANY points containing a NaN are ignored in the estimation%%  xnodes - vector defining the nodes in the grid in the independent%          variable (x). xnodes need not be equally spaced. xnodes%          must completely span the data. If they do not, then the%          'extend' property is applied, adjusting the first and last%          nodes to be extended as necessary. See below for a complete%          description of the 'extend' property.%%          If xnodes is a scalar integer, then it specifies the number%          of equally spaced nodes between the min and max of the data.%%  ynodes - vector defining the nodes in the grid in the independent%          variable (y). ynodes need not be equally spaced.%%          If ynodes is a scalar integer, then it specifies the number%          of equally spaced nodes between the min and max of the data.%%          Also see the extend property.%%  Additional arguments follow in the form of property/value pairs.%  Valid properties are:%    'smoothness', 'interp', 'regularizer', 'solver', 'maxiter'%    'extend', 'tilesize', 'overlap'%%  Any UNAMBIGUOUS shortening (even down to a single letter) is%  valid for property names. All properties have default values,%  chosen (I hope) to give a reasonable result out of the box.%%   'smoothness' - scalar - determines the eventual smoothness of the%          estimated surface. A larger value here means the surface%          will be smoother. Smoothness must be a non-negative real%          number.%%          Note: the problem is normalized in advance so that a%          smoothness of 1 MAY generate reasonable results. If you%          find the result is too smooth, then use a smaller value%          for this parameter. Likewise, bumpy surfaces suggest use%          of a larger value. (Sometimes, use of an iterative solver%          with too small a limit on the maximum number of iterations%          will result in non-convergence.)%%          DEFAULT: 1%%%   'interp' - character, denotes the interpolation scheme used%          to interpolate the data.%%          DEFAULT: 'triangle'%%          'bilinear' - use bilinear interpolation within the grid%                     (also known as tensor product linear interpolation)%%          'triangle' - split each cell in the grid into a triangle,%                     then linear interpolation inside each triangle%%          'nearest' - nearest neighbor interpolation. This will%                     rarely be a good choice, but I included it%                     as an option for completeness.%%%   'regularizer' - character flag, denotes the regularization%          paradignm to be used. There are currently three options.%%          DEFAULT: 'gradient'%%          'diffusion' or 'laplacian' - uses a finite difference%              approximation to the Laplacian operator (i.e, del^2).%%              We can think of the surface as a plate, wherein the%              bending rigidity of the plate is specified by the user%              as a number relative to the importance of fidelity to%              the data. A stiffer plate will result in a smoother%              surface overall, but fit the data less well. I've%              modeled a simple plate using the Laplacian, del^2. (A%              projected enhancement is to do a better job with the%              plate equations.)%%              We can also view the regularizer as a diffusion problem,%              where the relative thermal conductivity is supplied.%              Here interpolation is seen as a problem of finding the%              steady temperature profile in an object, given a set of%              points held at a fixed temperature. Extrapolation will%              be linear. Both paradigms are appropriate for a Laplacian%              regularizer.%%          'gradient' - attempts to ensure the gradient is as smooth%              as possible everywhere. Its subtly different from the%              'diffusion' option, in that here the directional%              derivatives are biased to be smooth across cell%              boundaries in the grid.%%              The gradient option uncouples the terms in the Laplacian.%              Think of it as two coupled PDEs instead of one PDE. Why%              are they different at all? The terms in the Laplacian%              can balance each other.%%          'springs' - uses a spring model connecting nodes to each%              other, as well as connecting data points to the nodes%              in the grid. This choice will cause any extrapolation%              to be as constant as possible.%%              Here the smoothing parameter is the relative stiffness%              of the springs connecting the nodes to each other compared%              to the stiffness of a spting connecting the lattice to%              each data point. Since all springs have a rest length%              (length at which the spring has zero potential energy)%              of zero, any extrapolation will be minimized.%%          Note: I don't terribly like the 'springs' strategy.%          It tends to drag the surface towards the mean of all%          the data. Its been left in only because the paradigm%          interests me.%%%   'solver' - character flag - denotes the solver used for the%          resulting linear system. Different solvers will have%          different solution times depending upon the specific%          problem to be solved. Up to a certain size grid, the%          direct \ solver will often be speedy, until memory%          swaps causes problems.%%          What solver should you use? Problems with a significant%          amount of extrapolation should avoid lsqr. \ may be%          best numerically for small smoothnesss parameters and%          high extents of extrapolation.%%          Large numbers of points will slow down the direct%          \, but when applied to the normal equations, \ can be%          quite fast. Since the equations generated by these%          methods will tend to be well conditioned, the normal%          equations are not a bad choice of method to use. Beware%          when a small smoothing parameter is used, since this will%          make the equations less well conditioned.%%          DEFAULT: 'normal'%%          '\' - uses matlab's backslash operator to solve the sparse%                     system. 'backslash' is an alternate name.%%          'symmlq' - uses matlab's iterative symmlq solver%%          'lsqr' - uses matlab's iterative lsqr solver%%          'normal' - uses \ to solve the normal equations.%%%   'maxiter' - only applies to iterative solvers - defines the%          maximum number of iterations for an iterative solver%%          DEFAULT: min(10000,length(xnodes)*length(ynodes))%%%   'extend' - character flag - controls whether the first and last%          nodes in each dimension are allowed to be adjusted to%          bound the data, and whether the user will be warned if%          this was deemed necessary to happen.%%          DEFAULT: 'warning'%%          'warning' - Adjust the first and/or last node in%                     x or y if the nodes do not FULLY contain%                     the data. Issue a warning message to this%                     effect, telling the amount of adjustment%                     applied.%%          'never'  - Issue an error message when the nodes do%                     not absolutely contain the data.%%          'always' - automatically adjust the first and last%                     nodes in each dimension if necessary.%                     No warning is given when this option is set.%%%   'tilesize' - grids which are simply too large to solve for%          in one single estimation step can be built as a set%          of tiles. For example, a 1000x1000 grid will require%          the estimation of 1e6 unknowns. This is likely to%          require more memory (and time) than you have available.%          But if your data is dense enough, then you can model%          it locally using smaller tiles of the grid.%%          My recommendation for a reasonable tilesize is%          roughly 100 to 200. Tiles of this size take only%          a few seconds to solve normally, so the entire grid%          can be modeled in a finite amount of time. The minimum%          tilesize can never be less than 3, although even this%          size tile is so small as to be ridiculous.%%          If your data is so sparse than some tiles contain%          insufficient data to model, then those tiles will%          be left as NaNs.%%          DEFAULT: inf%%%   'overlap' - Tiles in a grid have some overlap, so they%          can minimize any problems along the edge of a tile.%          In this overlapped region, the grid is built using a%          bi-linear combination of the overlapping tiles.%%          The overlap is specified as a fraction of the tile%          size, so an overlap of 0.20 means there will be a 20%%          overlap of successive tiles. I do allow a zero overlap,%          but it must be no more than 1/2.%%          0 <= overlap <= 0.5%%          Overlap is ignored if the tilesize is greater than the%          number of nodes in both directions.%%          DEFAULT: 0.20%%%   'autoscale' - Some data may have widely different scales on%          the respective x and y axes. If this happens, then%          the regularization may experience difficulties. %          %          autoscale = 'on' will cause gridfit to scale the x%          and y node intervals to a unit length. This should%          improve the regularization procedure. The scaling is%          purely internal. %%          autoscale = 'off' will disable automatic scaling%%          DEFAULT: 'on'%%% Arguments: (output)%  zgrid   - (nx,ny) array containing the fitted surface%%  xgrid, ygrid - as returned by meshgrid(xnodes,ynodes)%%% Speed considerations:%  Remember that gridfit must solve a LARGE system of linear%  equations. There will be as many unknowns as the total%  number of nodes in the final lattice. While these equations%  may be sparse, solving a system of 10000 equations may take%  a second or so. Very large problems may benefit from the%  iterative solvers or from tiling.%%% Example usage:%%  x = rand(100,1);%  y = rand(100,1);%  z = exp(x+2*y);%  xnodes = 0:.1:1;%  ynodes = 0:.1:1;%%  g = gridfit(x,y,z,xnodes,ynodes);%% Note: this is equivalent to the following call:%%  g = gridfit(x,y,z,xnodes,ynodes, ...%              'smooth',1, ...%              'interp','triangle', ...%              'solver','normal', ...%              'regularizer','gradient', ...%              'extend','warning', ...%              'tilesize',inf);%%% Author: John D'Errico% e-mail address: woodchips@rochester.rr.com% Release: 2.0% Release date: 5/23/06% set defaultsparams.smoothness = 1;params.interp = 'triangle';params.regularizer = 'gradient';params.solver = 'normal';params.maxiter = [];params.extend = 'warning';params.tilesize = inf;params.overlap = 0.20;params.mask = []; params.autoscale = 'on';params.xscale = 1;params.yscale = 1;% was the params struct supplied?if ~isempty(varargin)  if isstruct(varargin{1})    % params is only supplied if its a call from tiled_gridfit    params = varargin{1};    if length(varargin)>1      % check for any overrides      params = parse_pv_pairs(params,varargin{2:end});    end  else    % check for any overrides of the defaults    params = parse_pv_pairs(params,varargin);  endend% check the parameters for acceptabilityparams = check_params(params);% ensure all of x,y,z,xnodes,ynodes are column vectors,% also drop any NaN datax=x(:);y=y(:);z=z(:);k = isnan(x) | isnan(y) | isnan(z);if any(k)  x(k)=[];  y(k)=[];  z(k)=[];endxmin = min(x);xmax = max(x);ymin = min(y);ymax = max(y);% did they supply a scalar for the nodes?

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
午夜日韩在线观看| 亚洲美女屁股眼交3| 欧美综合视频在线观看| 日本大香伊一区二区三区| 99久久777色| 92精品国产成人观看免费 | 欧美羞羞免费网站| 91久久精品网| 欧美日韩一区二区三区免费看| 欧美亚洲另类激情小说| 欧洲一区在线电影| 欧美日韩国产综合视频在线观看| 欧美日韩精品一区二区在线播放| 久久日韩粉嫩一区二区三区| 日韩欧美一级特黄在线播放| 日韩女优毛片在线| 久久综合久色欧美综合狠狠| 欧美精品一区视频| 国产精品久久久99| 一区二区三区精品久久久| 亚洲一区二区欧美日韩 | 欧美一区二区日韩一区二区| 欧美一级二级三级乱码| 2022国产精品视频| 亚洲欧美欧美一区二区三区| 亚洲电影你懂得| 美国十次综合导航| av一区二区三区四区| 欧美日韩精品一区二区三区四区 | 欧美三级乱人伦电影| 欧美日韩午夜在线| 久久精品欧美一区二区三区麻豆| 国产成人av福利| 久久久777精品电影网影网| 中文字幕欧美三区| 国产在线观看免费一区| 精品国产亚洲一区二区三区在线观看| 久久久精品免费观看| 激情综合色丁香一区二区| 日韩一级黄色大片| 日本成人中文字幕| 久久99久久精品欧美| 亚洲六月丁香色婷婷综合久久| 欧美国产激情一区二区三区蜜月 | 欧美精品xxxxbbbb| 亚洲一区在线观看免费| 欧美日韩视频在线观看一区二区三区| 亚洲欧美国产高清| 欧美日韩美少妇| 久久精品久久综合| 久久久精品欧美丰满| 国产不卡免费视频| 亚洲蜜桃精久久久久久久| 欧美色综合天天久久综合精品| 亚洲www啪成人一区二区麻豆| 欧美一区二区视频观看视频| 九九在线精品视频| 国产精品久久毛片av大全日韩| 91黄色免费网站| 免费观看成人鲁鲁鲁鲁鲁视频| 久久久不卡影院| 欧洲av在线精品| 狠狠色综合播放一区二区| 日韩理论电影院| 日韩欧美国产综合一区| 国产成人免费视频一区| 亚洲精品成人少妇| 欧美videos大乳护士334| 波多野结衣视频一区| 亚洲资源中文字幕| 久久精品视频免费观看| 在线这里只有精品| 国产精品88888| 成人黄色小视频在线观看| 五月天一区二区三区| 久久你懂得1024| 欧美三级视频在线播放| 国产又粗又猛又爽又黄91精品| 亚洲色图丝袜美腿| 久久先锋资源网| 欧美日韩精品电影| www.久久久久久久久| 免费精品99久久国产综合精品| 亚洲另类在线视频| 久久久精品tv| 91精品国产乱码| 一本大道综合伊人精品热热| 国模冰冰炮一区二区| 亚洲大片精品永久免费| 中文字幕一区免费在线观看 | 国产一区二区免费看| 一区二区三区日韩欧美精品| 国产丝袜欧美中文另类| 日韩亚洲欧美成人一区| 91成人免费在线| aa级大片欧美| 国产成人亚洲精品青草天美| 免费高清成人在线| 亚洲成人激情社区| 亚洲精品免费看| 国产精品夫妻自拍| 国产精品国产三级国产普通话蜜臀 | 欧美精品一级二级| 99精品欧美一区| 懂色中文一区二区在线播放| 国产精品一区在线观看你懂的| 人人狠狠综合久久亚洲| 图片区日韩欧美亚洲| 午夜伊人狠狠久久| 性感美女极品91精品| 亚洲成a人v欧美综合天堂下载 | 国产白丝网站精品污在线入口| 免费看黄色91| 久久国产欧美日韩精品| 蜜桃av一区二区在线观看| 人人爽香蕉精品| 日本aⅴ精品一区二区三区| 青青草原综合久久大伊人精品优势| 婷婷综合在线观看| 午夜免费欧美电影| 亚洲123区在线观看| 午夜久久久影院| 日本成人在线网站| 国产尤物一区二区| www.久久精品| 欧美日韩精品欧美日韩精品一 | 精品一区二区三区在线播放视频| 全部av―极品视觉盛宴亚洲| 捆绑调教一区二区三区| 国产九色精品成人porny| 成人网男人的天堂| 成人av小说网| 色综合天天综合网天天看片| 在线观看国产精品网站| 欧美日韩在线观看一区二区| 欧美中文字幕一区二区三区亚洲| 欧美日韩国产另类不卡| 精品国免费一区二区三区| 国产欧美日韩另类一区| 亚洲人成小说网站色在线| 亚洲最大成人网4388xx| 蜜桃一区二区三区四区| 国产成人在线观看| 欧美性猛交xxxx黑人交| 欧美mv和日韩mv国产网站| 亚洲国产高清aⅴ视频| 亚洲靠逼com| 免费亚洲电影在线| 国产69精品久久777的优势| 91国产精品成人| 91精品国产综合久久久久久久| 久久久综合网站| 亚洲精品五月天| 麻豆视频一区二区| 91香蕉国产在线观看软件| 国产精品久久久久久久久久免费看 | 经典三级在线一区| 91视视频在线观看入口直接观看www | 欧美精品在欧美一区二区少妇| 久久精品视频一区二区| 亚洲综合视频在线| 粉嫩高潮美女一区二区三区| 欧美日韩久久一区二区| 国产精品国产成人国产三级 | 日本精品裸体写真集在线观看| 欧美一区二区三区在| 综合网在线视频| 国产最新精品免费| 91成人在线观看喷潮| 亚洲国产电影在线观看| 奇米色一区二区| 欧美日精品一区视频| 最好看的中文字幕久久| 国产精品99久久久久久似苏梦涵 | 青草av.久久免费一区| 91久久精品一区二区二区| 亚洲国产成人自拍| 欧美人伦禁忌dvd放荡欲情| 国产精品每日更新| 国产中文一区二区三区| 欧美一级久久久久久久大片| 一区二区在线看| eeuss鲁片一区二区三区| 精品国产一区二区精华| 天堂一区二区在线免费观看| 波波电影院一区二区三区| 国产午夜精品福利| 久久超碰97人人做人人爱| 91精品黄色片免费大全| 亚洲国产裸拍裸体视频在线观看乱了| 成人黄页毛片网站| 国产精品日日摸夜夜摸av| 国产综合久久久久影院| 欧美一级久久久| 免费观看成人鲁鲁鲁鲁鲁视频| 在线播放91灌醉迷j高跟美女 | 精品久久久久久久一区二区蜜臀| 午夜精品成人在线| 在线播放中文字幕一区| 秋霞午夜av一区二区三区|