?? consfmin.m
字號:
function [g, geq, dg, dgeq] = consfmin(x, baseMVA, bus, gen, gencost, branch, areas, Ybus, Yf, Yt, mpopt, parms, ccost)%CONSFMIN Evaluates nonlinear constraints and their Jacobian for OPF.% [g, geq, dg, dgeq] = consfmin(x, baseMVA, bus, gen, gencost, ...% branch, areas, Ybus, Yf, Yt, mpopt)% MATPOWER% $Id: consfmin.m,v 1.4 2004/09/07 18:27:37 ray Exp $% by Carlos E. Murillo-Sanchez, PSERC Cornell & Universidad Autonoma de Manizales% and Ray Zimmerman, PSERC Cornell% Copyright (c) 1996-2004 by Power System Engineering Research Center (PSERC)% See http://www.pserc.cornell.edu/matpower/ for more info.%%----- initialize -----%% define named indices into data matrices[GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, ... GEN_STATUS, PMAX, PMIN, MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN] = idx_gen;[F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, ... RATE_C, TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST] = idx_brch;[PW_LINEAR, POLYNOMIAL, MODEL, STARTUP, SHUTDOWN, N, COST] = idx_cost;%% constantj = sqrt(-1);%% generator infoon = find(gen(:, GEN_STATUS) > 0); %% which generators are on?gbus = gen(on, GEN_BUS); %% what buses are they at?%% sizes of thingsnb = size(bus, 1);nl = size(branch, 1);%npv = length(pv);%npq = length(pq);ng = length(on); %% number of generators that are turned onbr = find(branch(:, BR_STATUS));nbr = length(br);%% set up indexing for xj1 = 1; j4 = nb; %% j1:j4 - V angle of all busesj5 = j4 + 1; j6 = j4 + nb; %% j5:j6 - V mag of all busesj7 = j6 + 1; j8 = j6 + ng; %% j7:j8 - P of generatorsj9 = j8 + 1; j10 = j8 + ng; %% j9:j10 - Q of generatorsnb = parms(1);ng = parms(2);nl = parms(3);ny = parms(4);nx = parms(5);nvl = parms(6);nz = parms(7);nxyz = parms(8);thbas = parms(9);thend = parms(10);vbas = parms(11);vend = parms(12);pgbas = parms(13);pgend = parms(14);qgbas = parms(15);qgend = parms(16);ybas = parms(17);yend = parms(18);zbas = parms(19);zend = parms(20);pmsmbas = parms(21);pmsmend = parms(22);qmsmbas = parms(23);qmsmend = parms(24);sfbas = parms(25);sfend = parms(26);stbas = parms(27);stend = parms(28);%% grab Pg & QgPg = x(j7:j8); %% active generation in p.u.Qg = x(j9:j10); %% reactive generation in p.u.%% put Pg & Qg back in gengen(on, PG) = Pg * baseMVA; %% active generation in MWgen(on, QG) = Qg * baseMVA; %% reactive generation in MVAr %% rebuild SbusSbus = makeSbus(baseMVA, bus, gen); %% net injected power in p.u.%% ----- evaluate constraints -----%% reconstruct VVa = zeros(nb, 1);Va = x(j1:j4);Vm = x(j5:j6);V = Vm .* exp(j * Va);%% evaluate power flow equationsmis = V .* conj(Ybus * V) - Sbus;%% compute branch power flowsSf = V(branch(br, F_BUS)) .* conj(Yf(br, :) * V); %% complex power injected at "from" bus (p.u.)St = V(branch(br, T_BUS)) .* conj(Yt(br, :) * V); %% complex power injected at "to" bus (p.u.)%% compute constraint function values%% First the equality constraints (power flow)geq = [ real(mis); %% active power mismatch for all buses imag(mis) ]; %% reactive power mismatch for all buses%% Then the inequality constraints (branch limits)if mpopt(24) == 1 %% P limit (Pan Wei) g = [ real(Sf) - branch(br, RATE_A)/baseMVA; %% branch apparent power limits (from bus) real(St) - branch(br, RATE_A)/baseMVA ]; %% branch apparent power limits (to bus)else %% |S| limit g = [ abs(Sf) - branch(br, RATE_A)/baseMVA; %% branch apparent power limits (from bus) abs(St) - branch(br, RATE_A)/baseMVA ]; %% branch apparent power limits (to bus)end%%----- evaluate partials of constraints -----if nargout > 2 %% compute partials of injected bus powers [dSbus_dVm, dSbus_dVa] = dSbus_dV(Ybus, V); %% w.r.t. V dSbus_dPg = sparse(gbus, 1:ng, -1, nb, ng); %% w.r.t. Pg dSbus_dQg = sparse(gbus, 1:ng, -j, nb, ng); %% w.r.t. Qg %% compute partials of line flows w.r.t. V [dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm, Sf, St] = dSbr_dV(branch, Yf, Yt, V); %% line limits are w.r.t apparent power, so compute partials of apparent power [dAf_dVa, dAf_dVm, dAt_dVa, dAt_dVm] = ... dAbr_dV(dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm, Sf, St); %% construct Jacobian of equality constraints (load flows) and transpose it dgeq = [ %% equality constraints real(dSbus_dVa), real(dSbus_dVm), ... real(dSbus_dPg), real(dSbus_dQg), sparse(nb, ny+nz); %% P mismatch imag(dSbus_dVa), imag(dSbus_dVm), ... imag(dSbus_dPg), imag(dSbus_dQg), sparse(nb, ny+nz); %% Q mismatch ]'; %% construct Jacobian of inequality constraints (branch limits) %% and transpose it so fmincon likes it if mpopt(24) == 1 %% P limit (Pan Wei) dg = [ real(dSf_dVa(br,:)), real(dSf_dVm(br,:)), sparse(nbr,2*ng+ny+nz); %% Pf limit real(dSt_dVa(br,:)), real(dSt_dVm(br,:)), sparse(nbr,2*ng+ny+nz); %% Pt limit ]'; else %% |S| limit dg = [ dAf_dVa(br,:), dAf_dVm(br,:), sparse(nbr,2*ng+ny+nz); %% |Sf| limit dAt_dVa(br,:), dAt_dVm(br,:), sparse(nbr,2*ng+ny+nz); %% |St| limit ]'; end %% the following lines can be removed if/when fmincon %% supports sparse matrices for non-linearly constrained problems dgeq = full(dgeq); dg = full(dg);endreturn;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -