亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? featselp.m

?? The pattern recognition matlab toolbox
?? M
字號:
%FEATSELP Pudil's floating feature selection (forward)% % [W,R] = FEATSELP(A,CRIT,K,T,FID)%% INPUT	% 	A    Training dataset%   CRIT Name of the criterion or untrained mapping %        	(default: 'NN', 1-Nearest Neighbor error)%   K    Number of features to select (default: K = 0, select optimal set)%   T    Tuning dataset (optional)%   N    Number of cross-validations (optional)%   FID  File ID to write progress to (default [], see PRPROGRESS)%% OUTPUT%   W    Feature selection mapping%   R    Matrix with step-by-step results% % DESCRIPTION% Forward floating selection of K features using the dataset A. CRIT sets% the criterion used by the feature evaluation routine FEATEVAL. If the% dataset T is given, it is used as test set for FEATEVAL. Alternatively% a number of cross-validations N may be supplied. For K = 0, the optimal% feature set (maximum value of FEATEVAL) is returned. The result W can% be used for selecting features in a dataset B using B*W.% The selected features are stored in W.DATA and can be found by +W.%% Note: this routine is highly time consuming.%% In R the search is reported step by step:% % 	R(:,1) : number of features% 	R(:,2) : criterion value% 	R(:,3) : added / deleted feature% % SEE ALSO% MAPPINGS, DATASETS, FEATEVAL, FEATSELO, FEATSELB, FEATSELI,% FEATSEL,  FEATSELF, FEATSELM, PRPROGRESS% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Sciences, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: featselp.m,v 1.3 2007/04/21 23:06:46 duin Exp $function [w,r] = featselp(a,crit,ksel,t,fid)	prtrace(mfilename);		if (nargin < 2) | isempty(crit)    prwarning(2,'no criterion specified, assuming NN');		crit = 'NN'; 	end	if (nargin < 3) | isempty(ksel)		ksel = 0; 	end	if (nargin < 4) | isempty(t)    prwarning(3,'no tuning set supplied (risk of overfit)');		t = [];	end	if (nargin < 5)		fid = [];	end  % If no arguments are supplied, return an untrained mapping.	if (nargin == 0) | (isempty(a))		w = mapping('featselp',{crit,ksel,t});		w = setname(w,'Floating FeatSel');		return	end	isvaldfile(a,1,2); % at least 1 object per class, 2 classes	a = testdatasize(a);	iscomdset(a,t);		[m,k,c] = getsize(a); featlist = getfeatlab(a);	% If KSEL is not given, return all features.	if (ksel == 0)		peak = 1; ksel = k; 	else 		peak = 0; 	end	if (~isempty(t))		if (k ~= size(t,2))      error('The sizes of the training and tuning dataset do not match.')		end	end	critval_opt = zeros(1,k);	% Maximum criterion value for sets of all sizes.  critval_max = 0;    			% Maximum criterion value found so far.  I = [1:k];      			    % Pool of remaining feature indices.  J = [];      			      	% Pool of selected feature indices.  r = [];           			  % Result matrix with selection history.	Iopt = J; 	n = 0;	prprogress(fid,'\nfeatselp: Pudils Floating Search\n')	while (n < k)		critval = zeros(1,length(I));		% Add the best feature.		for j = 1:length(I)			L = [J,I(j)];					% Add one feature to the already selected ones.			if (isempty(t))				% Evaluate the criterion function.				critval(j) = feateval(a(:,L),crit);			else				critval(j) = feateval(a(:,L),crit,t(:,L));			end      % If this feature is the best so far and we have not yet selected			% KSEL features, store it.			if (critval(j) > critval_max) & (n < ksel)				n_max = length(L);				critval_max = critval(j);				Iopt = L;			end		end    [mx,j] = max(critval);  % Find best feature of the remaining ones,    J = [J, I(j)];          %   add it to the set of selected features    I(j) = [];              %   and remove it from the pool.		% Store the best criterion value found for any set of n features.		n = n + 1; critval_opt(n) = mx;		r = [r; [n, mx, J(end)]];		prprogress(fid,'  %d %f',r(end,1:2));		prprogress(fid,' %i',J);		prprogress(fid,'\n')				% Now keep removing features until the criterion gets worse.		while (n > 2)			critval = zeros(1,n);			for j = 1:n				L = J; L(j) = [];		% Remove one feature from the selected ones.						if (isempty(t))			% Evaluate the criterion function.					critval(j) = feateval(a(:,L),crit);				else					critval(j) = feateval(a(:,L),crit,t(:,L));				end						% If removing this feature gives the best result so far (or				% the same result using less features), and we have not yet				% removed all KSEL features, store it.				if ((critval(j) > critval_max) | ((critval(j) == critval_max) & ...																					(length(L) < n_max))) & ...					 (n <= ksel + 1)					n_max = length(L);					critval_max = critval(j);					Iopt = L;				end			end			% If this subset is better than any found before, store and report it.			% Otherwise, stop removing features.			[mx,j] = max(critval);			if (mx > critval_opt(n-1))				n = n - 1; critval_opt(n) = mx;				I = [I,J(j)]; J(j) = [];				r = [r; [n, mx, -I(end)]];		    prprogress(fid,'  %d %f',r(end,1:2));				prprogress(fid,' %i',J);				prprogress(fid,'\n')			else				break;			end		end		% If we have found more than KSEL features, return the mapping using		% the best KSEL features.		if (n > ksel)			if (ksel < length(Iopt))				J = Iopt(1:ksel);			else				J = Iopt;			end			prprogress(fid,'featselp finished\n')			w = featsel(k,J);			w = setlabels(w,featlist(J,:));			w = setname(w,'Floating FeatSel');			return		end	end	prprogress(fid,'featselp finished\n')		% Return all features, sorted by their criterion value.	w = featsel(k,Iopt);	w = setlabels(w,featlist(Iopt,:));	w = setname(w,'Floating FeatSel');return

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
最好看的中文字幕久久| 91小视频在线观看| 欧美一级黄色录像| 亚洲成人手机在线| 欧美日韩的一区二区| 五月综合激情婷婷六月色窝| 欧美视频在线观看一区| 日韩va亚洲va欧美va久久| 欧美日韩高清影院| 精品在线免费观看| 国产亚洲综合色| 成人伦理片在线| 亚洲精品亚洲人成人网在线播放| 555www色欧美视频| 日韩精品一区第一页| 欧美日韩一区二区三区在线看 | 中文字幕精品三区| 波多野洁衣一区| 一区二区理论电影在线观看| 精品视频123区在线观看| 免费国产亚洲视频| 国产精品电影一区二区三区| 91在线码无精品| 亚洲电影第三页| 日韩一区二区在线免费观看| 国产成人午夜精品影院观看视频 | 成人午夜视频在线观看| 日韩毛片一二三区| 欧美精品一级二级三级| 国产成人精品免费一区二区| 一区二区三区四区视频精品免费 | 99久久er热在这里只有精品15| 91精品国产综合久久久久久| 国产一区二区三区在线观看免费视频 | 欧美成人在线直播| 成人av在线资源网| 日韩国产精品久久久久久亚洲| 色综合久久久久综合| 婷婷国产v国产偷v亚洲高清| 国产欧美日韩一区二区三区在线观看 | 午夜精品久久久久久久久久久| 93久久精品日日躁夜夜躁欧美| 久久女同互慰一区二区三区| 91蜜桃在线免费视频| 另类小说欧美激情| 亚洲精品欧美激情| 久久久99精品免费观看不卡| 欧美午夜宅男影院| 懂色av中文一区二区三区| 亚洲成人一区二区在线观看| 国产精品国产三级国产普通话蜜臀 | 欧美伊人久久大香线蕉综合69| 国产精品午夜在线观看| 欧美三级视频在线播放| eeuss鲁片一区二区三区在线看| 国产亚洲一区二区三区四区| 欧美日韩不卡一区二区| 99视频精品免费视频| 国产在线精品免费av| 日韩精品亚洲一区| 一区二区三区资源| 国产精品色在线观看| 精品国产一区二区三区久久久蜜月| 麻豆91在线看| 丝袜美腿成人在线| 一区二区三区波多野结衣在线观看| 色av一区二区| 成人免费视频播放| 国产一区二区三区观看| 欧美96一区二区免费视频| 亚洲成人av一区二区三区| 中文字幕制服丝袜一区二区三区| 欧美影院精品一区| 色狠狠一区二区| 99精品久久只有精品| 国产成人av电影在线| 国产美女在线精品| 国产福利一区二区三区在线视频| 亚洲男人天堂一区| 亚洲人成网站影音先锋播放| 国产日韩精品一区二区三区| 久久久久久久综合| 久久五月婷婷丁香社区| 久久只精品国产| 久久免费视频一区| 亚洲国产激情av| 国产女人水真多18毛片18精品视频| 91成人看片片| 欧美亚州韩日在线看免费版国语版| 丝袜美腿亚洲色图| 麻豆精品视频在线观看| 久久国产日韩欧美精品| 国产一区二区电影| 国产suv精品一区二区883| va亚洲va日韩不卡在线观看| 在线观看视频一区二区欧美日韩| 狠狠色丁香久久婷婷综| 国内精品免费在线观看| 99免费精品视频| 欧美性视频一区二区三区| 在线播放一区二区三区| 精品国产乱码久久久久久夜甘婷婷 | 免费观看成人av| 国产在线播放一区三区四| 国产揄拍国内精品对白| 大尺度一区二区| 91久久香蕉国产日韩欧美9色| 国产精品一区二区男女羞羞无遮挡| 一区二区三区在线观看国产| 亚洲一区二三区| 日本不卡在线视频| 国产aⅴ综合色| 欧美伊人精品成人久久综合97 | 欧美一级片在线看| 久久亚洲精精品中文字幕早川悠里 | 久久蜜臀中文字幕| 亚洲私人黄色宅男| 青草国产精品久久久久久| 高清shemale亚洲人妖| 色婷婷综合视频在线观看| 91精品在线观看入口| 久久综合给合久久狠狠狠97色69| 日韩欧美资源站| 国产精品女同互慰在线看| 亚洲国产综合在线| 国产成人丝袜美腿| 欧美男人的天堂一二区| 久久综合一区二区| 亚洲曰韩产成在线| 国产九色sp调教91| 欧美精品自拍偷拍| 国产精品国产馆在线真实露脸 | 专区另类欧美日韩| 午夜欧美电影在线观看| 丰满白嫩尤物一区二区| 欧美日韩国产高清一区二区| 国产欧美日韩中文久久| 日本不卡视频在线| 色av成人天堂桃色av| 久久精品人人爽人人爽| 日韩专区一卡二卡| 91理论电影在线观看| 国产日韩欧美高清| 美女网站一区二区| 欧美亚一区二区| 国产精品久久久久一区二区三区 | 国产成人在线观看免费网站| 色婷婷一区二区| 国产精品视频一二| 久久成人免费网站| 欧美另类z0zxhd电影| 一区二区三区中文字幕电影| 成人免费高清在线观看| 欧美成人精品3d动漫h| 午夜亚洲福利老司机| 成人av动漫网站| 中文字幕欧美国产| 国产一区二区久久| 久久亚洲综合色一区二区三区| 国产精品卡一卡二卡三| 国产乱子伦视频一区二区三区| 国产成人精品三级麻豆| www欧美成人18+| 久色婷婷小香蕉久久| 日韩一级在线观看| 日本91福利区| 欧美一区二区视频网站| 亚洲国产综合视频在线观看| 在线观看91精品国产入口| 一区二区三区不卡视频| 精品免费一区二区三区| 视频一区二区不卡| 91精品国产一区二区三区蜜臀| 精品va天堂亚洲国产| 久久99久久久欧美国产| 日韩精品一区二区三区三区免费| 久久久国产一区二区三区四区小说 | 欧美日韩一区 二区 三区 久久精品| 制服.丝袜.亚洲.中文.综合| 亚洲电影一区二区| 欧美日韩国产123区| 午夜久久电影网| 欧美一级艳片视频免费观看| 久久精品国产亚洲a| 久久综合国产精品| 成人妖精视频yjsp地址| 亚洲精品视频一区二区| 欧美日韩久久久| 美日韩一区二区三区| 久久久精品一品道一区| 成人午夜大片免费观看| 亚洲精品中文字幕乱码三区| 欧美在线播放高清精品| 日韩电影免费在线看| 亚洲精品在线观看网站| 成人中文字幕电影| 亚洲高清视频在线| 日韩欧美一区二区三区在线| 国产91精品免费| 一区二区三区在线视频观看|