亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? mapping.m

?? The pattern recognition matlab toolbox
?? M
字號:
%MAPPING Mapping class constructor%%	W = MAPPING(MAPPING_FILE, MAPPING_TYPE, DATA, LABELS, SIZE_IN, SIZE_OUT)%% A map/classifier object is constructed. It may be used to map a dataset A% on another dataset B by B = mapd(A,W) or by training a mapping using an% untrained mapping W and a dataset A: V = mapd(A,W) or by modifying,% (or combining) a mapping W with another mapping V: Wnew = mapd(V,W);% These operations may also be written as B = A*W, V = A*W or Wnew = V*W.%% Note that mappings are usually not defined by PRTools users, but just by% PRTools programmers that like to add new tools for training or data% manupulation. See FISHERC or LDC for simple examples of a MAPPING construct.%% MAPPING_FILE       name of the routine used for learning or executing the%                    mapping. This routine (e.g. 'mapfile') should accept and%                    execute the following types of calls, depending on the%                    value of MAPPING_TYPE:%%    MAPPING_TYPE = 'untrained': V = mapfile(A,W) %                    for training the untrained mapping W by a dataset A,%                    resulting in a trained mapping V. This may be called as %                    V = A*W.%    MAPPING_TYPE = 'trained':   D = mapfile(B,W)%                    for mapping a dataset B by the mapping W resulting in a%                    dataset D. This may be called as D = B*W. W is the result%                    of training an untrained mapping V by a dataset A: %                    W = A*V. Consequently D = B*(A*V).%    MAPPING_TYPE = 'combiner: V2 = mapfile(V1,W), such that %                    D = B*V2 is consistent with D = B*V1*W and thereby %                    also with D = mapfile(B*V1,W).%    MAPPING_TYPE = 'fixed': D = mapfile(A,W) or D = A*W.%                    In practice there is not much difference between a%                    trained and a fixed mapping. The first is found from%                    data, the latter is defined directly by its parameters.%                   % MAPPING_TYPE       string defining the type of mapping:%                   'untrained', 'trained', "combiner' or 'fixed', see above.%                    Default is 'untrained'. MAPPING(MAPPING_FILE,DATA) is%                    equivalent to MAPPING(MAPPING_FILE,'untrained',DATA)%% DATA               Data, structure or cell array necessary for defining the%                    mapping, e.g. the weights of a neural network. DATA is%                    just used in the MAPPING_FILE for executing the mapping.% LABELS             Array with labels to be used as feature labels for the%                    dataset resulting by executing the mapping. So at least%                    as many labels as defined by SIZE_OUT has to be supplied.% SIZE_IN            Input dimensionality or size vector describing its shape,%                    e.g. in case the input space is derived from an image.%                    For a classifier SIZE_IN is the feature size.% SIZE_OUT           Output dimensionality or size vector describing its%                    shape, e.g. in case the output space should represent an%                    image. For a classifier SIZE_OUT is the number of%                    classes. Default is the number of labels in LABELS.%                    SIZE_IN and SIZE_OUT are just used for error checking.%                    If SIZE_IN is not supplied they are both set to 0 and %                    checking is skipped.%% Other parameter fields may be set to define the mapping further by%%	W = MAPPING(MAPPING_FILE, MAPPING_TYPE, DATA, LABELS, ...%                                             'field1',V1,'field2',V2, ...)% or by%%	W = MAPPING(MAPPING_FILE, MAPPING_TYPE, DATA, LABELS, SIZE_IN, ...%                                      SIZE_OUT,'field1',V1,'field2',V2, ...)%% The following fields are possible (if not set defaults are supplied):%% SCALE               Output multiplication factor. If SCALE is a scalar all%                     multiplied by it. SCALE may also be a vector with size%                     as defined by SIZE_OUT to set separate scalings for each%                     output.% OUT_CONV            0,1,2,3 for defining the desired output conversion:%                     0 - no(default), 1: SIGM, 2: NORMM or 3: SIGM and NORMM.%                     These values are set by cnormc in case of 2-class%                     discriminants (OUTCONV = 1) and by CLASSC%                     (OUT_CONV = OUT_CONV+2) to convert densities and%                     sigmoidal outputs to normalised posterior probabilities.% COST                Classification costs in case the mapping defines a%                     classifier. See SETCOST.% NAME                String with mapping name% USER                User definable variable%% All parameters are stored in fields corresponding to the above names.% Parameter fields of a given mapping may also be changed by:%%	W = SET(W,'field1',V1,'field2',V2, ...)%% They may also be set by the routines SETMAPPING_FILE, SETMAPPING_TYPE, % SETDATA, SETLABELS, SETSIZE_IN, SETSIZE_OUT, SETSIZE, SETSCALE, SETOUT_CONV,% SETCOST, SETNAME and SETUSER. Fields may be retrieved by%%	VARARGOUT = GET(W,'field1','field2', ...)%% or by the routines GETMAPPING_FILE, GETMAPPING_TYPE, GETDATA, GETSIZE_IN,% GETSIZE_OUT, GETSCALE, GETOUTCONV, GETCOST, GETNAME and GETUSER. %% See also DATASETS, MAPPINGS

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久精品国产久精国产| 国产福利一区二区三区在线视频| 精品国产1区2区3区| av日韩在线网站| 久久激五月天综合精品| 一区二区三区在线视频播放| 国产色产综合色产在线视频| 在线不卡的av| 色成人在线视频| 高清视频一区二区| 麻豆精品在线观看| 丝袜美腿成人在线| 一区二区三区中文免费| 国产精品污www在线观看| 日韩一级大片在线| 欧美日韩激情一区| 色婷婷综合久久久久中文| 国产经典欧美精品| 国产美女精品人人做人人爽| 日韩激情视频网站| 亚洲不卡一区二区三区| 亚洲欧美国产三级| 国产精品久久毛片a| 久久亚洲综合色| 精品日韩一区二区三区免费视频| 欧美色手机在线观看| 99国产精品国产精品久久| 成a人片国产精品| 国产精品亚洲人在线观看| 韩国av一区二区三区| 另类小说一区二区三区| 免费成人结看片| 日本亚洲天堂网| 爽爽淫人综合网网站| 三级精品在线观看| 日韩成人午夜精品| 青草国产精品久久久久久| 免费人成黄页网站在线一区二区| 午夜激情一区二区三区| 性做久久久久久免费观看欧美| 亚洲图片自拍偷拍| 亚洲高清三级视频| 日韩在线卡一卡二| 免费一区二区视频| 国产自产v一区二区三区c| 韩国欧美国产一区| 高清av一区二区| 99精品一区二区| 欧美综合一区二区| 5858s免费视频成人| 欧美一区二区三级| 国产欧美日韩精品在线| 中文字幕高清不卡| 综合分类小说区另类春色亚洲小说欧美 | 国产精品18久久久| 不卡视频在线观看| 色婷婷综合久久久久中文 | 国产成人精品三级| 99久久免费精品| 欧美这里有精品| 欧美精品电影在线播放| ww久久中文字幕| 国产精品婷婷午夜在线观看| 亚洲欧美日韩一区二区| 亚洲成人手机在线| 国产一二三精品| 99久久精品国产毛片| 欧美久久久久久蜜桃| 久久久国产午夜精品| 亚洲久本草在线中文字幕| 日韩不卡一二三区| 成人综合在线观看| 欧美精品三级在线观看| 久久综合一区二区| 亚洲精品福利视频网站| 另类小说一区二区三区| 91丝袜美腿高跟国产极品老师 | 激情图片小说一区| 91麻豆免费看片| 日韩一二三四区| 亚洲特黄一级片| 美美哒免费高清在线观看视频一区二区| 国产精品亚洲午夜一区二区三区| 欧美综合欧美视频| 国产欧美一区二区三区在线看蜜臀 | 99精品欧美一区二区三区综合在线| 欧美日韩一级大片网址| 国产区在线观看成人精品 | 精品亚洲欧美一区| 色欧美乱欧美15图片| 久久亚洲综合色一区二区三区 | 国产精品久久久久婷婷| 午夜精品福利久久久| 99视频精品全部免费在线| 欧美一级片在线观看| 亚洲三级在线免费| 久久精品999| 欧美日韩和欧美的一区二区| 亚洲国产岛国毛片在线| 日韩不卡免费视频| 在线精品视频免费播放| 亚洲国产精品t66y| 激情综合网av| 欧美日韩不卡一区| 亚洲欧美色综合| 国产福利精品导航| 精品日韩欧美一区二区| 亚洲午夜在线电影| 91浏览器入口在线观看| 国产亚洲女人久久久久毛片| 日韩电影在线观看一区| 欧美午夜片在线观看| 国产精品久久久久久妇女6080| 久久精品国产精品亚洲综合| 欧美日韩性生活| 一区二区在线看| 99久久er热在这里只有精品66| 国产天堂亚洲国产碰碰| 极品尤物av久久免费看| 91精品婷婷国产综合久久性色| 亚洲午夜国产一区99re久久| 91精品办公室少妇高潮对白| √…a在线天堂一区| 欧美一区二区精品久久911| 亚洲男人的天堂一区二区| 粉嫩av一区二区三区在线播放| 精品国产精品网麻豆系列 | 色诱视频网站一区| 中文字幕一区视频| 丁香激情综合国产| 欧美国产一区二区在线观看 | 成人v精品蜜桃久久一区| 国产拍欧美日韩视频二区| 国产一区二区在线影院| 欧美成人性福生活免费看| 蜜桃av一区二区在线观看 | 日韩欧美一级精品久久| 日韩国产精品久久久久久亚洲| 欧美电影在哪看比较好| 日韩av二区在线播放| 日韩一区二区三区视频在线| 美女任你摸久久| 久久综合久久鬼色中文字| 国产美女一区二区三区| 国产精品美日韩| 色婷婷久久久亚洲一区二区三区| 一区二区成人在线| 欧美色中文字幕| 日韩电影在线看| 精品国产一区二区三区忘忧草| 国产真实乱对白精彩久久| 久久久91精品国产一区二区精品| 国产成都精品91一区二区三| 中文字幕中文字幕在线一区| 在线观看一区日韩| 日韩精品91亚洲二区在线观看| 欧美成人video| 成人影视亚洲图片在线| 一区二区三区四区不卡在线| 91麻豆精品久久久久蜜臀 | 经典三级视频一区| 国产精品免费观看视频| 欧美性猛交一区二区三区精品| 日韩国产精品大片| 国产亚洲精品资源在线26u| 99精品1区2区| 水野朝阳av一区二区三区| 久久久国产一区二区三区四区小说| 不卡的av网站| 偷窥国产亚洲免费视频| 久久久精品综合| 欧美影视一区在线| 久久9热精品视频| 亚洲三级免费观看| 日韩亚洲国产中文字幕欧美| 成人综合激情网| 亚洲1区2区3区4区| 国产欧美一区二区三区在线看蜜臀| 91国模大尺度私拍在线视频 | 色偷偷88欧美精品久久久| 日韩黄色在线观看| 午夜电影一区二区三区| 精品伦理精品一区| 96av麻豆蜜桃一区二区| 日本欧美一区二区在线观看| 国产精品每日更新| 日韩欧美一区二区免费| 91蝌蚪porny成人天涯| 久草在线在线精品观看| 亚洲国产日韩av| 日本一区二区三区dvd视频在线| 欧美视频中文字幕| 不卡的电影网站| 国产资源精品在线观看| 视频一区二区欧美| 亚洲图片欧美激情| 久久久久久免费| 欧美久久一区二区| 91小视频免费观看| 国产成人av一区二区|